418 research outputs found

    The Offset to an Algebraic Curve and an Application to Conics

    Get PDF
    International audienceCurve offsets are important objects in computer-aided design. We study the algebraic properties of the offset to an algebraic curve, thus obtaining a general formula for its degree. This is applied to computing the degree of the offset to conics. We also compute an implicit equation of the generalised offset to a conic by using sparse resultants and the knowledge of the degree of the implicit equation

    On the parallel lines for nondegenerate conics

    Full text link
    Computation of parallel lines (envelopes) to parabolas, ellipses, and hyperbolas is of importance in structure engineering and theory of mechanisms. Homogeneous polynomials that implicitly define parallel lines for the given offset to a conic are found by computing Groebner bases for an elimination ideal of a suitably defined affine variety. Singularity of the lines is discussed and their singular points are explicitly found as functions of the offset and the parameters of the conic. Critical values of the offset are linked to the maximum curvature of each conic. Application to a finite element analysis is shown. Keywords: Affine variety, elimination ideal, Groebner basis, homogeneous polynomial, singularity, family of curves, envelope, pitch curve, undercutting, cam surfaceComment: 40 pages, 10 figures, TOC, 3 appendices, short version of this paper was presented at the 5th Annual Hawaii International Conference on Statistics, Mathematics and Related Fields, January 16 - 18, 2006, Honolulu Hawaii, US

    On the implicit equation of conics and quadrics offsets

    Get PDF
    A new determinantal representation for the implicit equation of offsets to conics and quadrics is derived. It is simple, free of extraneous components and provides a very compact expanded form, these representations being very useful when dealing with geometric queries about offsets such as point positioning or solving intersection purposes. It is based on several classical results in ?A Treatise on the Analytic Geometry of Three Dimensions? by G. Salmon for offsets to non-degenerate conics and central quadrics.This research was funded by the Spanish Ministerio de EconomĂ­a y Competitividad and by the European Regional Development Fund (ERDF), under the project MTM2017-88796-P

    Computing the ÎĽ-bases of algebraic monoid curves and surfaces

    Get PDF
    The μ-basis is a developing algebraic tool to study the expressions of rational curves and surfaces. It can play a bridge role between the parametric forms and implicit forms and show some advantages in implicitization, inversion formulas and singularity computation. However, it is difficult and there are few works to compute the μ-basis from an implicit form. In this paper, we derive the explicit forms of μ-basis for implicit monoid curves and surfaces, including the conics and quadrics which are particular cases of these entities. Additionally, we also provide the explicit form of μ-basis for monoid curves and surfaces defined by any rational parametrization (not necessarily in standard proper form). Our technique is simply based on the linear coordinate transformation and standard forms of these curves and surfaces. As a practical application in numerical situation, if an exact multiple point can not be computed, we can consider the problem of computing “approximate μ-basis” as well as the error estimation.Agencia Estatal de Investigació

    The Theory of Bonds: A New Method for the Analysis of Linkages

    Full text link
    In this paper we introduce a new technique, based on dual quaternions, for the analysis of closed linkages with revolute joints: the theory of bonds. The bond structure comprises a lot of information on closed revolute chains with a one-parametric mobility. We demonstrate the usefulness of bond theory by giving a new and transparent proof for the well-known classification of overconstrained 5R linkages.Comment: more detailed explanations and additional reference

    Partial Degree Formulae for Plane Offset Curves

    Get PDF
    In this paper we present several formulae for computing the partial degrees of the defining polynomial of the offset curve to an irreducible affine plane curve given implicitly, and we see how these formulae particularize to the case of rational curves. In addition, we present a formula for computing the degree w.r.t the distance variable.Comment: 24 pages, no figure

    On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs

    Full text link
    Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics which are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines which are diagonally related to lines of curvature is proven theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory

    Analysis of Local Image Structure using Intersections of Conics

    Get PDF
    We propose an algorithm for the analysis of local image structure that is able to distinguish between a number of different structures like corners, crossings, y-junctions, t-junctions, lines and line segments. Furthermore, parameters of the detected structures can be evaluated, as, for example, the opening angle of corners. The main idea of the algorithm is to fit the intersection of two conics to the local image structure. The results of the algorithm when applied to synthetic and real data will be presented

    Characterizing envelopes of moving rotational cones and applications in CNC machining

    Get PDF
    Motivated by applications in CNC machining, we provide a characterization of surfaces which are enveloped by a one-parametric family of congruent rotational cones. As limit cases, we also address ruled surfaces and their offsets. The characterizations are higher order nonlinear PDEs generalizing the ones by Gauss and Monge for developable surfaces and ruled surfaces, respectively. The derivation includes results on local approximations of a surface by cones of revolution, which are expressed by contact order in the space of planes. To this purpose, the isotropic model of Laguerre geometry is used as there rotational cones correspond to curves (isotropic circles) and higher order contact is computed with respect to the image of the input surface in the isotropic model. Therefore, one studies curve-surface contact that is conceptually simpler than the surface-surface case. We show that, in a generic case, there exist at most six positions of a fixed rotational cone that have third order contact with the input surface. These results are themselves of interest in geometric computing, for example in cutter selection and positioning for flank CNC machining.RYC-2017-2264
    • …
    corecore