4,117 research outputs found

    VO: Vaccine Ontology

    Get PDF
    Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine data analysis and inference. To address these problems, the community-based Vaccine Ontology (VO, "http://www.violinet.org/vaccineontology":http://www.violinet.org/vaccineontology) has been developed through collaboration with vaccine researchers and many national and international centers and programs, including the National Center for Biomedical Ontology (NCBO), the Infectious Disease Ontology (IDO) Initiative, and the Ontology for Biomedical Investigations (OBI). VO utilizes the Basic Formal Ontology (BFO) as the top ontology and the Relation Ontology (RO) for definition of term relationships. VO is represented in the Web Ontology Language (OWL) and edited using the Protégé-OWL. Currently VO contains more than 2000 terms and relationships. VO emphasizes on classification of vaccines and vaccine components, vaccine quality and phenotypes, and host immune response to vaccines. These reflect different aspects of vaccine composition and biology and can thus be used to model individual vaccines. More than 200 licensed vaccines and many vaccine candidates in research or clinical trials have been modeled in VO. VO is being used for vaccine literature mining through collaboration with the National Center for Integrative Biomedical Informatics (NCIBI). Multiple VO applications will be presented.
&#xa

    Ontobull and BFOConvert: Web-based programs to support automatic ontology conversion

    Get PDF
    When a widely reused ontology appears in a new version which is not compatible with older versions, the ontologies reusing it need to be updated accordingly. Ontobull has been developed to automatically update ontologies with new term IRI(s) and associated metadata to take account of such version changes. To use the Ontobull web interface a user is required to (i) upload one or more ontology OWL source files; (ii) input an ontology term IRI mapping; and (where needed) (iii) provide update settings for ontology headers and XML namespace IDs. Using this information, the backend Ontobull Java program automatically updates the OWL ontology files with desired term IRIs and ontology metadata. The Ontobull subprogram BFOConvert supports the conversion of an ontology that imports a previous version of BFO. A use case is provided to demonstrate the features of Ontobull and BFOConvert

    The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration

    Get PDF
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing a process of coordinated reform, and new ontologies being created, on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable, logically well-formed, and to incorporate accurate representations of biological reality. We describe the OBO Foundry initiative, and provide guidelines for those who might wish to become involved in the future

    Research and in situ conservation of owl monkeys enhances environmental law enforcement at the Colombian-Peruvian border

    Get PDF
    This study reports on impacts of illegal trade in owl monkeys (Aotus nancymaae, A. vociferans) for the biomedical research market in the Colombian-Peruvian Amazonian border. Through freedom of information requests and interviews with hunters we found that 912 owl monkeys, including A. nancymaae captured in Peru, were trapped over a 3-month period in 2012 to supply a malaria research facility based in Leticia, Colombia, which had trapping permits for the use of only 800 A. vociferans annually yet experimentation took place using A. nancymaae. High levels of extraction in Peru have had population-level impacts with significantly lower densities of Aotus spp. (3-24individuals/km2) compared to Colombian sites with low hunting pressure (26-44individuals/km2). Post-experimental release of this species in Colombian territory has created a new distribution whose status and impacts on resident populations of A. vociferans remain unknown. The trapping method has also had environmental impact, with loss of over 65,000 trees (including sleeping sites), annually. As Aotus species are registered under the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix II, international trade requires official permission and evidence that extraction does not impact wild populations. However, no official records exist and CITES legislation has failed, due principally to a lack of appropriate monitoring by national authorities responsible for compliance. Of further concern is that we had previously documented and reported the illegal trade to the appropriate governmental authorities yet still no action was taken-as demonstrated by the continuing trade in 2013. Enforcement eventually occurred when a non-governmental organization initiated legal action against organizations responsible. A successful second instance ruling by the Colombian State's Council in 2013 revoked trapping permits. Using the trade in owl monkeys as a case study we consider implementation, compliance, and enforcement of CITES in the border area to identify mechanisms to improve enforcement of environmental legislation. Am. J. Primatol. 76:658-669, 2014. © 2014 Wiley Periodicals, Inc

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Overcoming the Ontology Enrichment Bottleneck with Quick Term Templates

    Get PDF
    The developers of the Ontology of Biomedical Investigations (OBI) primarily use Protégé for editing. However, adding many classes with similar patterns of logical definition is time consuming, error prone, and requires the editor to have some expertise in OWL. Therefore, the process is poorly suited for a large number of domain experts who have limited experience Protégé and ontology development. We have developed a procedure to ease this task and allow such domain experts to add terms to the ontology in a way that both effectively includes complex logical definitions yet requires minimal manual intervention by OBI developers. The procedure is based on editing a Quick Term Template in a spreadsheet format which is subsequently converted into an OWL file. This procedure promises to be a robust and scalable approach for ontology enrichment

    EXACT2: the semantics of biomedical protocols

    Get PDF
    © 2014 Soldatova et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously ‘unseen’ (not used for the construction of EXACT2) protocols. Results: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.This work has been partially funded by the Brunel University BRIEF award and a grant from Occams Resources

    An evolutionary approach to Function

    Get PDF
    The distinction between function and role is a vexed and difficult one. While the distinction appears to be useful, in practice it is hard to apply; this can be even worse when applying this distinction to biology. In this paper, I take an evolutionary approach, considering a series of examples, to develop and generate definitions for these concepts. I test them in practice against work performed on the Ontology for Biomedical Investigations (OBI). Finally, I give an axiomatisation and discuss methods for applying these definitions in practice
    corecore