15,791 research outputs found

    D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics

    Full text link
    We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation.Comment: 55 pages, v2: typos corrected, minor comments adde

    1-String CZ-Representation of Planar Graphs

    Full text link
    In this paper, we prove that every planar 4-connected graph has a CZ-representation---a string representation using paths in a rectangular grid that contain at most one vertical segment. Furthermore, two paths representing vertices u,vu,v intersect precisely once whenever there is an edge between uu and vv. The required size of the grid is n×2nn \times 2n

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Hamiltonicity and σ\sigma-hypergraphs

    Get PDF
    We define and study a special type of hypergraph. A σ\sigma-hypergraph H=H(n,r,qH= H(n,r,q ∣\mid σ\sigma), where σ\sigma is a partition of rr, is an rr-uniform hypergraph having nqnq vertices partitioned into n n classes of qq vertices each. If the classes are denoted by V1V_1, V2V_2,...,VnV_n, then a subset KK of V(H)V(H) of size rr is an edge if the partition of rr formed by the non-zero cardinalities ∣ \mid KK ∩\cap Vi∣V_i \mid, 1≤i≤n 1 \leq i \leq n, is σ\sigma. The non-empty intersections KK ∩\cap ViV_i are called the parts of KK, and s(σ)s(\sigma) denotes the number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and sharp cycles in which only consecutive edges have a nonempty intersection. We show that most σ\sigma-hypergraphs contain a Hamiltonian Berge cycle and that, for n≥s+1n \geq s+1 and q≥r(r−1)q \geq r(r-1), a σ\sigma-hypergraph HH always contains a sharp Hamiltonian cycle. We also extend this result to kk-intersecting cycles

    Bypasses for rectangular diagrams. Proof of Jones' conjecture and related questions

    Full text link
    In the present paper a criteria for a rectangular diagram to admit a simplification is given in terms of Legendrian knots. It is shown that there are two types of simplifications which are mutually independent in a sense. A new proof of the monotonic simplification theorem for the unknot is given. It is shown that a minimal rectangular diagram maximizes the Thurston--Bennequin number for the corresponding Legendrian links. Jones' conjecture about the invariance of the algebraic number of intersections of a minimal braid representing a fixed link type is proved.Comment: 50 pages, 62 Figures, numerous minor correction

    Exact algorithms for the order picking problem

    Full text link
    Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixed-integer programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde

    A Simplification of Combinatorial Link Floer Homology

    Full text link
    We define a new combinatorial complex computing the hat version of link Floer homology over Z/2Z, which turns out to be significantly smaller than the Manolescu-Ozsvath-Sarkar one.Comment: 20 pages with figures, final version printed in JKTR, v.3 of Oberwolfach Proceeding
    • …
    corecore