831 research outputs found

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n−3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n−32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Flip Distance to some Plane Configurations

    Get PDF
    We study an old geometric optimization problem in the plane. Given a perfect matching M on a set of n points in the plane, we can transform it to a non-crossing perfect matching by a finite sequence of flip operations. The flip operation removes two crossing edges from M and adds two non-crossing edges. Let f(M) and F(M) denote the minimum and maximum lengths of a flip sequence on M, respectively. It has been proved by Bonnet and Miltzow (2016) that f(M)=O(n^2) and by van Leeuwen and Schoone (1980) that F(M)=O(n^3). We prove that f(M)=O(n Delta) where Delta is the spread of the point set, which is defined as the ratio between the longest and the shortest pairwise distances. This improves the previous bound for point sets with sublinear spread. For a matching M on n points in convex position we prove that f(M)=n/2-1 and F(M)={{n/2} choose 2}; these bounds are tight. Any bound on F(*) carries over to the bichromatic setting, while this is not necessarily true for f(*). Let M\u27 be a bichromatic matching. The best known upper bound for f(M\u27) is the same as for F(M\u27), which is essentially O(n^3). We prove that f(M\u27)<=slant n-2 for points in convex position, and f(M\u27)= O(n^2) for semi-collinear points. The flip operation can also be defined on spanning trees. For a spanning tree T on a convex point set we show that f(T)=O(n log n)

    IST Austria Thesis

    Get PDF
    This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli

    Flip Distance to a Non-crossing Perfect Matching

    Get PDF
    A perfect straight-line matching MM on a finite set PP of points in the plane is a set of segments such that each point in PP is an endpoint of exactly one segment. MM is non-crossing if no two segments in MM cross each other. Given a perfect straight-line matching MM with at least one crossing, we can remove this crossing by a flip operation. The flip operation removes two crossing segments on a point set QQ and adds two non-crossing segments to attain a new perfect matching M′M'. It is well known that after a finite number of flips, a non-crossing matching is attained and no further flip is possible. However, prior to this work, no non-trivial upper bound on the number of flips was known. If g(n)g(n) (resp.~k(n)k(n)) is the maximum length of the longest (resp.~shortest) sequence of flips starting from any matching of size nn, we show that g(n)=O(n3)g(n) = O(n^3) and g(n)=Ω(n2)g(n) = \Omega(n^2) (resp.~k(n)=O(n2)k(n) = O(n^2) and k(n)=Ω(n)k(n) = \Omega (n))

    Short Flip Sequences to Untangle Segments in the Plane

    Full text link
    A (multi)set of segments in the plane may form a TSP tour, a matching, a tree, or any multigraph. If two segments cross, then we can reduce the total length with the following flip operation. We remove a pair of crossing segments, and insert a pair of non-crossing segments, while keeping the same vertex degrees. The goal of this paper is to devise efficient strategies to flip the segments in order to obtain crossing-free segments after a small number of flips. Linear and near-linear bounds on the number of flips were only known for segments with endpoints in convex position. We generalize these results, proving linear and near-linear bounds for cases with endpoints that are not in convex position. Our results are proved in a general setting that applies to multiple problems, using multigraphs and the distinction between removal and insertion choices when performing a flip.Comment: 19 pages, 10 figure

    Rainbow cycles in flip graphs

    Get PDF
    The flip graph of triangulations has as vertices all triangulations of a convex nn-gon, and an edge between any two triangulations that differ in exactly one edge. An rr-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly rr~times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of rr-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex nn-gon, the flip graph of plane trees on an arbitrary set of nn~points, and the flip graph of non-crossing perfect matchings on a set of nn~points in convex position. In addition, we consider two flip graphs on classes of non-geometric objects: the flip graph of permutations of {1,2,…,n}\{1,2,\dots,n\} and the flip graph of kk-element subsets of {1,2,…,n}\{1,2,\dots,n\}. In each of the five settings, we prove the existence and non-existence of rainbow cycles for different values of~rr, nn and~kk
    • …
    corecore