16,964 research outputs found

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (⌊4k+1⌋+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (⌊4k+1⌋+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k−1)n−(2k−12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The number of edges in k-quasi-planar graphs

    Full text link
    A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is n(\log n)^{O(\log k)}. In the present note, we improve this bound to (n\log n)2^{\alpha^{c_k}(n)} in the special case where the graph is drawn in such a way that every pair of edges meet at most once. Here \alpha(n) denotes the (extremely slowly growing) inverse of the Ackermann function. We also make further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of edges of such graphs is at most 2^{ck^6}n\log n.Comment: arXiv admin note: substantial text overlap with arXiv:1106.095

    Coloring Kk-free intersection graphs of geometric objects in the plane

    Get PDF
    AbstractThe intersection graph of a collection C of sets is the graph on the vertex set C, in which C1,C2∈C are joined by an edge if and only if C1∩C2≠0̸. Erdős conjectured that the chromatic number of triangle-free intersection graphs of n segments in the plane is bounded from above by a constant. Here we show that it is bounded by a polylogarithmic function of n, which is the first nontrivial bound for this problem. More generally, we prove that for any t and k, the chromatic number of every Kk-free intersection graph of n curves in the plane, every pair of which have at most t points in common, is at most (ctlognlogk)clogk, where c is an absolute constant and ct only depends on t. We establish analogous results for intersection graphs of convex sets, x-monotone curves, semialgebraic sets of constant description complexity, and sets that can be obtained as the union of a bounded number of sets homeomorphic to a disk.Using a mix of results on partially ordered sets and planar separators, for large k we improve the best known upper bound on the number of edges of a k-quasi-planar topological graph with n vertices, that is, a graph drawn in the plane with curvilinear edges, no k of which are pairwise crossing. As another application, we show that for every ε>0 and for every positive integer t, there exist δ>0 and a positive integer n0 such that every topological graph with n≥n0 vertices, at least n1+ε edges, and no pair of edges intersecting in more than t points, has at least nδ pairwise intersecting edges

    Bar 1-Visibility Graphs and their relation to other Nearly Planar Graphs

    Full text link
    A graph is called a strong (resp. weak) bar 1-visibility graph if its vertices can be represented as horizontal segments (bars) in the plane so that its edges are all (resp. a subset of) the pairs of vertices whose bars have a ϵ\epsilon-thick vertical line connecting them that intersects at most one other bar. We explore the relation among weak (resp. strong) bar 1-visibility graphs and other nearly planar graph classes. In particular, we study their relation to 1-planar graphs, which have a drawing with at most one crossing per edge; quasi-planar graphs, which have a drawing with no three mutually crossing edges; the squares of planar 1-flow networks, which are upward digraphs with in- or out-degree at most one. Our main results are that 1-planar graphs and the (undirected) squares of planar 1-flow networks are weak bar 1-visibility graphs and that these are quasi-planar graphs

    On the size of planarly connected crossing graphs

    Get PDF
    We prove that if an nn-vertex graph GG can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then GG has O(n)O(n) edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal 11-planar and fan-planar graphs.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given
    • …
    corecore