9,054 research outputs found

    Optimal Stopping Under Ambiguity in Continuous Time

    Get PDF
    We develop a theory of optimal stopping problems under ambiguity in continuous time. Using results from (backward) stochastic calculus, we characterize the value function as the smallest (nonlinear) supermartingale dominating the payoff process. For Markovian models, we derive an adjusted Hamilton-Jacobi-Bellman equation involving a nonlinear drift term that stems from the agent's ambiguity aversion. We show how to use these general results for search problems and American Options.Optimal Stopping, Ambiguity, Uncertainty Aversion, Robustness, Continuous-Time, Optimal Control

    Transition probability of Brownian motion in the octant and its application to default modeling

    Full text link
    We derive a semi-analytic formula for the transition probability of three-dimensional Brownian motion in the positive octant with absorption at the boundaries. Separation of variables in spherical coordinates leads to an eigenvalue problem for the resulting boundary value problem in the two angular components. The main theoretical result is a solution to the original problem expressed as an expansion into special functions and an eigenvalue which has to be chosen to allow a matching of the boundary condition. We discuss and test several computational methods to solve a finite-dimensional approximation to this nonlinear eigenvalue problem. Finally, we apply our results to the computation of default probabilities and credit valuation adjustments in a structural credit model with mutual liabilities
    • …
    corecore