1,179 research outputs found

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Repairable Replication-based Storage Systems Using Resolvable Designs

    Get PDF
    We consider the design of regenerating codes for distributed storage systems at the minimum bandwidth regeneration (MBR) point. The codes allow for a repair process that is exact and uncoded, but table-based. These codes were introduced in prior work and consist of an outer MDS code followed by an inner fractional repetition (FR) code where copies of the coded symbols are placed on the storage nodes. The main challenge in this domain is the design of the inner FR code. In our work, we consider generalizations of FR codes, by establishing their connection with a family of combinatorial structures known as resolvable designs. Our constructions based on affine geometries, Hadamard designs and mutually orthogonal Latin squares allow the design of systems where a new node can be exactly regenerated by downloading β≥1\beta \geq 1 packets from a subset of the surviving nodes (prior work only considered the case of β=1\beta = 1). Our techniques allow the design of systems over a large range of parameters. Specifically, the repetition degree of a symbol, which dictates the resilience of the system can be varied over a large range in a simple manner. Moreover, the actual table needed for the repair can also be implemented in a rather straightforward way. Furthermore, we answer an open question posed in prior work by demonstrating the existence of codes with parameters that are not covered by Steiner systems
    • …
    corecore