29 research outputs found

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s12ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s12kϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵs<22kϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s22k+ϵs \geq \frac{2}{2^k} + \epsilon

    Near-Optimal UGC-hardness of Approximating Max k-CSP_R

    Get PDF
    In this paper, we prove an almost-optimal hardness for Max kk-CSPR_R based on Khot's Unique Games Conjecture (UGC). In Max kk-CSPR_R, we are given a set of predicates each of which depends on exactly kk variables. Each variable can take any value from 1,2,,R1, 2, \dots, R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max kk-CSPR_R to within factor 2O(klogk)(logR)k/2/Rk12^{O(k \log k)}(\log R)^{k/2}/R^{k - 1} for any k,Rk, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3k=o(logR/loglogR)3 \leq k = o(\log R/\log \log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/Rk2)O(k/R^{k-2}) by Chan. When k=2k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSPR_R by Kindler, Kolla and Trevisan, we provide an Ω(logR/Rk1)\Omega(\log R/R^{k - 1})-approximation algorithm for Max kk-CSPR_R. This algorithm implies that our inapproximability result is tight up to a factor of 2O(klogk)(logR)k/212^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3k3 \leq k is a constant, the previously known gap was O(R)O(R), which is significantly larger than our gap of O(polylog R)O(\text{polylog } R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's dd-to-1 Conjecture and still get asymptotically the same hardness of approximation

    The Quest for Strong Inapproximability Results with Perfect Completeness

    Get PDF
    The Unique Games Conjecture (UGC) has pinned down the approximability of all constraint satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent in the UGC. For the important case when the input CSP instance admits a satisfying assignment, it therefore remains wide open to understand how well it can be approximated. This work is motivated by the pursuit of a better understanding of the inapproximability of perfectly satisfiable instances of CSPs. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover which we call "V label cover." Assuming a conjecture concerning the inapproximability of V label cover on perfectly satisfiable instances, we prove the following implications: * There is an absolute constant c0 such that for k >= 3, given a satisfiable instance of Boolean k-CSP, it is hard to find an assignment satisfying more than c0 k^2/2^k fraction of the constraints. * Given a k-uniform hypergraph, k >= 2, for all epsilon > 0, it is hard to tell if it is q-strongly colorable or has no independent set with an epsilon fraction of vertices, where q = ceiling[k + sqrt(k) - 0.5]. * Given a k-uniform hypergraph, k >= 3, for all epsilon > 0, it is hard to tell if it is (k-1)-rainbow colorable or has no independent set with an epsilon fraction of vertices. We further supplement the above results with a proof that an ``almost Unique\u27\u27 version of Label Cover can be approximated within a constant factor on satisfiable instances

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page

    New Tools and Connections for Exponential-Time Approximation

    Get PDF
    In this paper, we develop new tools and connections for exponential time approximation. In this setting, we are given a problem instance and an integer r>1, and the goal is to design an approximation algorithm with the fastest possible running time. We give randomized algorithms that establish an approximation ratio of 1. r for maximum independent set in O∗(exp(O~(n/rlog2r+rlog2r))) time, 2. r for chromatic number in O∗(exp(O~(n/rlogr+rlog2r))) time, 3. (2−1/r) for minimum vertex cover in O∗(exp(n/rΩ(r))) time, and 4. (k−1/r) for minimum k-hypergraph vertex cover in O∗(exp(n/(kr)Ω(kr))) time. (Throughout, O~ and O∗ omit polyloglog(r) and factors polynomial in the input size, respectively.) The best known time bounds for all problems were O∗(2n/r) (Bourgeois et al. in Discret Appl Math 159(17):1954–1970, 2011; Cygan et al. in Exponential-time approximation of hard problems, 2008). For maximum independent set and chromatic number, these bounds were complemented by exp(n1−o(1)/r1+o(1)) lower bounds (under the Exponential Time Hypothesis (ETH)) (Chalermsook et al. in Foundations of computer science, FOCS, pp. 370–379, 2013; Laekhanukit in Inapproximability of combinatorial problems in subexponential-time. Ph.D. thesis, 2014). Our results show that the naturally-looking O∗(2n/r) bounds are not tight for all these problems. The key to these results is a sparsification procedure that reduces a problem to a bounded-degree variant, allowing the use of approximation algorithms for bounded-degree graphs. To obtain the first two results, we introduce a new randomized branching rule. Finally, we show a connection between PCP parameters and exponential-time approximation algorithms. This connection together with our independent set algorithm refute the possibility to overly reduce the size of Chan’s PCP (Chan in J. ACM 63(3):27:1–27:32, 2016). It also implies that a (significant) improvement over our result will refute the gap-ETH conjecture (Dinur in Electron Colloq Comput Complex (ECCC) 23:128, 2016; Manurangsi and Raghavendra in A birthday repetition theorem and complexity of approximating dense CSPs, 2016)

    The Biased Homogeneous r-Lin Problem

    Get PDF

    New Tools and Connections for Exponential-Time Approximation

    Get PDF
    In this paper, we develop new tools and connections for exponential time approximation. In this setting, we are given a problem instance and an integer r>1, and the goal is to design an approximation algorithm with the fastest possible running time. We give randomized algorithms that establish an approximation ratio of 1. r for maximum independent set in O∗(exp(O~(n/rlog2r+rlog2r))) time, 2. r for chromatic number in O∗(exp(O~(n/rlogr+rlog2r))) time, 3. (2−1/r) for minimum vertex cover in O∗(exp(n/rΩ(r))) time, and 4. (k−1/r) for minimum k-hypergraph vertex cover in O∗(exp(n/(kr)Ω(kr))) time. (Throughout, O~ and O∗ omit polyloglog(r) and factors polynomial in the input size, respectively.) The best known time bounds for all problems were O∗(2n/r) (Bourgeois et al. i

    Toward probabilistic checking against non-signaling strategies with constant locality

    Get PDF
    Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is probabilistically checkable proof (PCPs) systems that are sound against non-signaling strategies. In this thesis we show, assuming a certain geometrical hypothesis about noise robustness of non-signaling proofs (or, equivalently, about robustness to noise of solutions to the Sherali-Adams linear program), that a slight variant of the parallel repetition of the exponential-length constant-query PCP construction due to Arora et al. (JACM 1998) is sound against non-signaling strategies with constant locality. Our proof relies on the analysis of the linearity test and agreement test (also known as the direct product test) in the non-signaling setting
    corecore