11 research outputs found

    Efficient techniques to provide scalability for token-based cache coherence protocols

    Full text link
    Cache coherence protocols based on tokens can provide low latency without relying on non-scalable interconnects thanks to the use of efficient requests that are unordered. However, when these unordered requests contend for the same memory block, they may cause protocols races. To resolve the races and ensure the completion of all the cache misses, token protocols use a starvation prevention mechanism that is inefficient and non-scalable in terms of required storage structures and generated traffic. Besides, token protocols use non-silent invalidations which increase the latency of write misses proportionally to the system size. All these problems make token protocols non-scalable. To overcome the main problems of token protocols and increase their scalability, we propose a new starvation prevention mechanism named Priority Requests. This mechanism resolves contention by an efficient, elegant, and flexible method based on ordered requests. Furthermore, thanks to Priority Requests, efficient techniques can be applied to limit the storage requirements of the starvation prevention mechanism, to reduce the total traffic generated for managing protocol races, and to reduce the latency of write misses. Thus, the main problems of token protocols can be solved, which, in turn, contributes to wide their efficiency and scalability.Cuesta Sáez, BA. (2009). Efficient techniques to provide scalability for token-based cache coherence protocols [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6024Palanci

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Interconnects architectures for many-core era using surface-wave communication

    Get PDF
    PhD ThesisNetworks-on-chip (NoCs) is a communication paradigm that has emerged aiming to address on-chip communication challenges and to satisfy interconnection demands for chip-multiprocessors (CMPs). Nonetheless, there is continuous demand for even higher computational power, which is leading to a relentless downscaling of CMOS technology to enable the integration of many-cores. However, technology downscaling is in favour of the gate nodes over wires in terms of latency and power consumption. Consequently, this has led to the era of many-core processors where power consumption and performance are governed by inter-core communications rather than core computation. Therefore, NoCs need to evolve from being merely metalbased implementations which threaten to be a performance and power bottleneck for many-core efficiency and scalability. To overcome such intensified inter-core communication challenges, this thesis proposes a novel interconnect technology: the surface-wave interconnect (SWI). This new RF-based on-chip interconnect has notable characteristics compared to cutting-edge on-chip interconnects in terms of CMOS compatibility, high speed signal propagation, low power dissipation, and massive signal fan-out. Nonetheless, the realization of the SWI requires investigations at different levels of abstraction, such as the device integration and RF engineering levels. The aim of this thesis is to address the networking and system level challenges and highlight the potential of this interconnect. This should encourage further research at other levels of abstraction. Two specific system-level challenges crucial in future many-core systems are tackled in this study, which are cross-the-chip global communication and one-to-many communication. This thesis makes four major contributions towards this aim. The first is reducing the NoC average-hop count, which would otherwise increase packet-latency exponentially, by proposing a novel hybrid interconnect architecture. This hybrid architecture can not only utilize both regular metal-wire and SWI, but also exploits merits of both bus and NoC architectures in terms of connectivity compared to other general-purpose on-chip interconnect architectures. The second contribution addresses global communication issues by developing a distance-based weighted-round-robin arbitration (DWA) algorithm. This technique prioritizes global communication to be send via SWI short-cuts, which offer more efficient power dissipation and faster across-the-chip signal propagation. Results obtained using a cycleaccurate simulator demonstrate the effectiveness of the proposed system architecture in terms of significant power reduction, considervii able average delay reduction and higher throughput compared to a regular NoC. The third contribution is in handling multicast communications, which are normally associated with traffic overload, hotspots and deadlocks and therefore increase, by an order of magnitude the power consumption and latency. This has been achieved by proposing a novel routing and centralized arbitration schemes that exploits the SWI0s remarkable fan-out features. The evaluation demonstrates drastic improvements in the effectiveness of the proposed architecture in terms of power consumption ( 2-10x) and performance ( 22x) but with negligible hardware overheads ( 2%). The fourth contribution is to further explore multicast contention handling in a flexible decentralized manner, where original techniques such as stretch-multicast and ID-tagging flow control have been developed. A comparison of these techniques shows that the decentralized approach is superior to the centralized approach with low traffic loads, while the latter outperforms the former near and after NoC saturation

    Analytical modelling for the performance prediction and optimisation of near-neighbour structured grid hydrodynamics

    Get PDF
    The advent of modern High Performance Computing (HPC) has facilitated the use of powerful supercomputing machines that have become the backbone of data analysis and simulation. With such a variety of software and hardware available today, understanding how well such machines can perform is key for both efficient use and future planning. With significant costs and multi-year turn-around times, procurement of a new HPC architecture can be a significant undertaking. In this work, we introduce one such measure to capture the performance of such machines – analytical performance models. These models provide a mathematical representation of the behaviour of an application in the context of how its various components perform for an architecture. By parameterising its workload in such a way that the time taken to compute can be described in relation to one or more benchmarkable statistics, this allows for a reusable representation of an application that can be applied to multiple architectures. This work goes on to introduce one such benchmark of interest, Hydra. Hydra is a benchmark 3D Eulerian structured mesh hydrocode implemented in Fortran, with which the explosive compression of materials, shock waves, and the behaviour of materials at the interface between components can be investigated. We assess its scaling behaviour and use this knowledge to construct a performance model that accurately predicts the runtime to within 15% across three separate machines, each with its own distinct characteristics. Further, this work goes on to explore various optimisation techniques, some of which see a marked speedup in the overall walltime of the application. Finally, another software application of interest with similar behaviour patterns, PETSc, is examined to demonstrate how different applications can exhibit similar modellable patterns

    Study of Fine-Grained, Irregular Parallel Applications on a Many-Core Processor

    Get PDF
    This dissertation demonstrates the possibility of obtaining strong speedups for a variety of parallel applications versus the best serial and parallel implementations on commodity platforms. These results were obtained using the PRAM-inspired Explicit Multi-Threading (XMT) many-core computing platform, which is designed to efficiently support execution of both serial and parallel code and switching between the two. Biconnectivity: For finding the biconnected components of a graph, we demonstrate speedups of 9x to 33x on XMT relative to the best serial algorithm using a relatively modest silicon budget. Further evidence suggests that speedups of 21x to 48x are possible. For graph connectivity, we demonstrate that XMT outperforms two contemporary NVIDIA GPUs of similar or greater silicon area. Prior studies of parallel biconnectivity algorithms achieved at most a 4x speedup, but we could not find biconnectivity code for GPUs to compare biconnectivity against them. Triconnectivity: We present a parallel solution to the problem of determining the triconnected components of an undirected graph. We obtain significant speedups on XMT over the only published optimal (linear-time) serial implementation of a triconnected components algorithm running on a modern CPU. To our knowledge, no other parallel implementation of a triconnected components algorithm has been published for any platform. Burrows-Wheeler compression: We present novel work-optimal parallel algorithms for Burrows-Wheeler compression and decompression of strings over a constant alphabet and their empirical evaluation. To validate these theoretical algorithms, we implement them on XMT and show speedups of up to 25x for compression, and 13x for decompression, versus bzip2, the de facto standard implementation of Burrows-Wheeler compression. Fast Fourier transform (FFT): Using FFT as an example, we examine the impact that adoption of some enabling technologies, including silicon photonics, would have on the performance of a many-core architecture. The results show that a single-chip many-core processor could potentially outperform a large high-performance computing cluster. Boosted decision trees: This chapter focuses on the hybrid memory architecture of the XMT computer platform, a key part of which is a flexible all-to-all interconnection network that connects processors to shared memory modules. First, to understand some recent advances in GPU memory architecture and how they relate to this hybrid memory architecture, we use microbenchmarks including list ranking. Then, we contrast the scalability of applications with that of routines. In particular, regardless of the scalability needs of full applications, some routines may involve smaller problem sizes, and in particular smaller levels of parallelism, perhaps even serial. To see how a hybrid memory architecture can benefit such applications, we simulate a computer with such an architecture and demonstrate the potential for a speedup of 3.3X over NVIDIA's most powerful GPU to date for XGBoost, an implementation of boosted decision trees, a timely machine learning approach. Boolean satisfiability (SAT): SAT is an important performance-hungry problem with applications in many problem domains. However, most work on parallelizing SAT solvers has focused on coarse-grained, mostly embarrassing parallelism. Here, we study fine-grained parallelism that can speed up existing sequential SAT solvers. We show the potential for speedups of up to 382X across a variety of problem instances. We hope that these results will stimulate future research

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters

    Full text link
    Actualmente, los clusters de PC son un alternativa rentable a los computadores paralelos. En estos sistemas, miles de componentes (procesadores y/o discos duros) se conectan a través de redes de interconexión de altas prestaciones. Entre las tecnologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido adoptado por muchos de los sistemas más potentes construidos actualmente (lista top500). A medida que el número de nodos aumenta en estos sistemas, la red de interconexión también crece. Junto con el aumento del número de componentes la probabilidad de averías aumenta dramáticamente, y así, la tolerancia a fallos en el sistema en general, y de la red de interconexión en particular, se convierte en una necesidad. Desafortunadamente, la mayor parte de las estrategias de encaminamiento tolerantes a fallos propuestas para los computadores masivamente paralelos no pueden ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deterministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son necesarias nuevas estrategias para tolerar fallos. Por ello, esta tesis se centra en proporcionar los niveles adecuados de tolerancia a fallos a los clusters de PC, y en particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos adecuados para las redes de interconexión para clusters. El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR) consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y seleccionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encaminamiento capaz de proporcionar suficientesMontañana Aliaga, JM. (2008). Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2603Palanci

    Researching methods for efficient hardware specification, design and implementation of a next generation communication architecture

    Full text link
    The objective of this work is to create and implement a System Area Network (SAN) architecture called EXTOLL embedded in the current world of systems, software and standards based on the experiences obtained during the ATOLL project development and test. The topics of this work also cover system design methodology and educational issues in order to provide appropriate human resources and work premises. The scope of this work in the EXTOLL SAN project was: • the Xbar architecture and routing (multi-layer routing, virtual channels and their arbitration, routing formats, dead lock aviodance, debug features, automation of reuse) • the on-chip module communication architecture and parts of the host communication • the network processor architecture and integration • the development of the design methodology and the creation of the design flow • the team education and work structure. In order to successfully leverage student know-how and work flow methodology for this research project the SEED curricula changes has been governed by the Hochschul Didaktik Zentrum resulting in a certificate for "Hochschuldidaktik" and excellence in university education. The complexity of the target system required new approaches in concurrent Hardware/Software codesign. The concept of virtual hardware prototypes has been established and excessively used during design space exploration and software interface design

    On the Exploration of FPGAs and High-Level Synthesis Capabilities on Multi-Gigabit-per-Second Networks

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 24-01-2020Traffic on computer networks has faced an exponential grown in recent years. Both links and communication equipment had to adapt in order to provide a minimum quality of service required for current needs. However, in recent years, a few factors have prevented commercial off-the-shelf hardware from being able to keep pace with this growth rate, consequently, some software tools are struggling to fulfill their tasks, especially at speeds higher than 10 Gbit/s. For this reason, Field Programmable Gate Arrays (FPGAs) have arisen as an alternative to address the most demanding tasks without the need to design an application specific integrated circuit, this is in part to their flexibility and programmability in the field. Needless to say, developing for FPGAs is well-known to be complex. Therefore, in this thesis we tackle the use of FPGAs and High-Level Synthesis (HLS) languages in the context of computer networks. We focus on the use of FPGA both in computer network monitoring application and reliable data transmission at very high-speed. On the other hand, we intend to shed light on the use of high level synthesis languages and boost FPGA applicability in the context of computer networks so as to reduce development time and design complexity. In the first part of the thesis, devoted to computer network monitoring. We take advantage of the FPGA determinism in order to implement active monitoring probes, which consist on sending a train of packets which is later used to obtain network parameters. In this case, the determinism is key to reduce the uncertainty of the measurements. The results of our experiments show that the FPGA implementations are much more accurate and more precise than the software counterpart. At the same time, the FPGA implementation is scalable in terms of network speed — 1, 10 and 100 Gbit/s. In the context of passive monitoring, we leverage the FPGA architecture to implement algorithms able to thin cyphered traffic as well as removing duplicate packets. These two algorithms straightforward in principle, but very useful to help traditional network analysis tools to cope with their task at higher network speeds. On one hand, processing cyphered traffic bring little benefits, on the other hand, processing duplicate traffic impacts negatively in the performance of the software tools. In the second part of the thesis, devoted to the TCP/IP stack. We explore the current limitations of reliable data transmission using standard software at very high-speed. Nowadays, the network is becoming an important bottleneck to fulfill current needs, in particular in data centers. What is more, in recent years the deployment of 100 Gbit/s network links has started. Consequently, there has been an increase scrutiny of how networking functionality is deployed, furthermore, a wide range of approaches are currently being explored to increase the efficiency of networks and tailor its functionality to the actual needs of the application at hand. FPGAs arise as the perfect alternative to deal with this problem. For this reason, in this thesis we develop Limago an FPGA-based open-source implementation of a TCP/IP stack operating at 100 Gbit/s for Xilinx’s FPGAs. Limago not only provides an unprecedented throughput, but also, provides a tiny latency when compared to the software implementations, at least fifteen times. Limago is a key contribution in some of the hottest topic at the moment, for instance, network-attached FPGA and in-network data processing

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore