436 research outputs found

    A maximum entropy approach to the newsvendor problem with partial information

    Get PDF
    In this paper, we consider the newsvendor model under partial information, i.e., where the demand distribution D is partly unknown. We focus on the classical case where the retailer only knows the expectation and variance of D. The standard approach is then to determine the order quantity using conservative rules such as minimax regret or Scarf's rule. We compute instead the most likely demand distribution in the sense of maximum entropy. We then compare the performance of the maximum entropy approach with minimax regret and Scarf's rule on large samples of randomly drawn demand distributions. We show that the average performance of the maximum entropy approach is considerably better than either alternative, and more surprisingly, that it is in most cases a better hedge against bad results.Newsvendor model; entropy; partial information

    Validity and precision of estimates in the classical newsvendor model with exponential and rayleigh demand

    Get PDF
    In this paper we consider the classical newsvendor model with profit maximization. When demand is fully observed in each period and follows either the Rayleigh or the exponential distribution, appropriate estimators for the optimal order quantity and the maximum expected profit are established and their distributions are derived. Measuring validity and precision of the corresponding generated confidence intervals by respectively the actual confidence level and the expected half-length divided by the true quantity (optimal order quantity or maximum expected profit), we prove that the intervals are characterized by a very important and useful property. Either referring to confidence intervals for the optimal order quantity or the maximum expected profit, measurements for validity and precision take on exactly the same values. Furthermore, validity and precision do not depend upon the values assigned to the revenue and cost parameters of the model. To offer, therefore, a-priori knowledge for levels of precision and validity, values for the two statistical criteria, that is, the actual confidence level and the relative expected half-length are provided for different combinations of sample size and nominal confidence levels 90%, 95% and 99%. The values for the two criteria have been estimated by developing appropriate Monte-Carlo simulations. For the relative-expected half-length, values are computed also analytically.Inventory Control; Classical newsvendor model; Exponential and Rayleigh Distributions; Confidence Intervals; Monte-Carlo Simulations

    The newsvendor problem with advertising: an overview with extensions

    Get PDF
    The effect of advertising on sales has been the subject of recent studies as an important aspect in many demand-based problems. Herein, we deal with the newsvendor problem, due to its simple structure, as a suitable tool for illustrating how facets of marketing may affect decision-making concerning operational problems. In the setting presented, the newsvendor is faced with advertising-sensitive stochastic demand, where a demand-related random element comprises an advertising decision of the multiplicative or additive form. We assume that a suitable advertising strategy results in increased sales. Two advertising response functions are considered, these being concave downward and S-shaped. We review and extend the existing results relating to the newsvendor problem with marketing effects, which mostly pertain to the concave function. These are generalized by defining the S-shaped function, and some original insights into the effect of advertising are given. We establish that the optimal advertising expenditure for the multiplicative case is always less than or equal to the optimal amount in the equivalent deterministic model while it is always equal in the additive case. We finally illustrate the results that are obtained by providing numerical examples involving various advertising response functions, as well as management-related interpretations. © 2016, Springer-Verlag Berlin Heidelberg.European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; specific research project entitled "Modern Methods of Applied Mathematics for the Use in Technical Sciences'' [FSI-S-14-2290, 25053]; Ministry of Education, Youth and Sports under National Sustainability Programme I [LO1202]; Norway Grants via the EEA Scholarship Programme: Bilateral Scholarship Programme; Institutional cooperation projects [NF-CZ07-ICP-4-345-2016

    The Newsvendor Problem: Review and Directions for Future Research

    Get PDF
    In this paper, we review the contributions to date for analyzing the newsvendor problem. Our focus is on examining the specific extensions for analyzing this problem in the context of modeling customer demand, supplier costs, and the buyer risk profile. More specifically, we analyze the impact of market price, marketing effort, and stocking quantity on customer demand; how supplier prices can serve as a coordination mechanism in a supply chain setting; integrating alternative supplier pricing policies within the newsvendor framework; and how the buyer’s risk profile moderates the newsvendor order quantity decision. For each of these areas,we summarize the current literature and develop extensions. Finally, we also propose directions for future research

    Constructive solution methodologies to the capacitated newsvendor problem and surrogate extension

    Get PDF
    The newsvendor problem is a single-period stochastic model used to determine the order quantity of perishable product that maximizes/minimizes the profit/cost of the vendor under uncertain demand. The goal is to fmd an initial order quantity that can offset the impact of backlog or shortage caused by mismatch between the procurement amount and uncertain demand. If there are multiple products and substitution between them is feasible, overstocking and understocking can be further reduced and hence, the vendor\u27s overall profit is improved compared to the standard problem. When there are one or more resource constraints, such as budget, volume or weight, it becomes a constrained newsvendor problem. In the past few decades, many researchers have proposed solution methods to solve the newsvendor problem. The literature is first reviewed where the performance of each of existing model is examined and its contribution is reported. To add to these works, it is complemented through developing constructive solution methods and extending the existing published works by introducing the product substitution models which so far has not received sufficient attention despite its importance to supply chain management decisions. To illustrate this dissertation provides an easy-to-use approach that utilizes the known network flow problem or knapsack problem. Then, a polynomial in fashion algorithm is developed to solve it. Extensive numerical experiments are conducted to compare the performance of the proposed method and some existing ones. Results show that the proposed approach though approximates, yet, it simplifies the solution steps without sacrificing accuracy. Further, this dissertation addresses the important arena of product substitute models. These models deal with two perishable products, a primary product and a surrogate one. The primary product yields higher profit than the surrogate. If the demand of the primary exceeds the available quantity and there is excess amount of the surrogate, this excess quantity can be utilized to fulfill the shortage. The objective is to find the optimal lot sizes of both products, that minimize the total cost (alternatively, maximize the profit). Simulation is utilized to validate the developed model. Since the analytical solutions are difficult to obtain, Mathematical software is employed to find the optimal results. Numerical experiments are also conducted to analyze the behavior of the optimal results versus the governing parameters. The results show the contribution of surrogate approach to the overall performance of the policy. From a practical perspective, this dissertation introduces the applications of the proposed models and methods in different industries such as inventory management, grocery retailing, fashion sector and hotel reservation

    Dynamic Inventory Control with Satisfaction-Dependent Demand

    Get PDF
    In this paper, we consider the discrete multiperiod newsvendor dynamic inventory control problem where customers follow a simple satisfaction-based demand process, where their probability of demand depends on whether their demand was satised the last time they demanded a product, and observe the differences between optimal policies and myopic policies which do not directly consider how inventory policies can affect future demand. We conrm the intuitive result that inventory managers should tend to order more than the myopic policy when satised customers are more likely to demand product, and less than the myopic policy when satised customers are less likely to demand. Moreover, we and that, when choosing a fixed order policy, even an empirically myopic solution with perfect demand distribution information will move away from the optimum towards a suboptimal solution.

    A selective newsvendor approach to order management

    Full text link
    Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed-integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L-shaped method for two-stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise-linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state-of-the-art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61330/1/20320_ftp.pd

    Implementation of the Newsvendor Model with Clearance Pricing: How to (and How Not to) Estimate a Salvage Value

    Get PDF
    The newsvendor model is designed to decide how much of a product to order when the product is to be sold over a short selling season with stochastic demand and there are no additional opportunities to replenish inventory. There are many practical situations that reasonably conform to those assumptions, but the traditional newsvendor model also assumes a fixed salvage value: all inventory left over at the end of the season is sold off at a fixed per-unit price. The fixed salvage value assumption is questionable when a clearance price is rationally chosen in response to the events observed during the selling season: a deep discount should be taken if there is plenty of inventory remaining at the end of the season, whereas a shallow discount is appropriate for a product with higher than expected demand. This paper solves for the optimal order quantity in the newsvendor model, assuming rational clearance pricing. We then study the performance of the traditional newsvendor model. The key to effective implementation of the traditional newsvendor model is choosing an appropriate fixed salvage value. (We show that an optimal order quantity cannot be generally achieved by merely enhancing the traditional newsvendor model to include a nonlinear salvage value function.) We demonstrate that several intuitive methods for estimating the salvage value can lead to an excessively large order quantity and a substantial profit loss. Even though the traditional model can result in poor performance, the model seems as if it is working correctly: the order quantity chosen is optimal given the salvage value inputted to the model, and the observed salvage value given the chosen order quantity equals the inputted one. We discuss how to estimate a salvage value that leads the traditional newsvendor model to the optimal or near-optimal order quantity. Our results highlight the importance of understanding how a model can interact with its own inputs: when inputs to a model are influenced by the decisions of the model, care is needed to appreciate how that interaction influences the decisions recommended by the model and how the model’s inputs should be estimated

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    An Elasticity Approach to the Newsvendor with Price Sensitive Demand

    Get PDF
    Cataloged from PDF version of article.We introduce a measure of elasticity of stochastic demand, called the elasticity of the lost-sales rate, which offers a unifying perspective on the well-known newsvendor with pricing problem. This new concept provides a framework to characterize structural results for coordinated and uncoordinated pricing and inventory strategies. Concavity and submodularity of the profit function, as well as sensitivity properties of the optimal inventory and price policies, are characterized by monotonicity conditions, or bounds, on the elasticity of the lost-sales rate. These elasticity conditions are satisfied by most relevant demand models in the marketing and operations literature. Our results unify and complement previous work on price-setting newsvendor models and provide a new tool for researchers modeling stochastic price-sensitive demand in other contexts
    corecore