209,825 research outputs found

    The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology

    Get PDF
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users

    Applications and Uses of Dental Ontologies

    No full text
    The development of a number of large-scale semantically-rich ontologies for biomedicine attests to the interest of life science researchers and clinicians in Semantic Web technologies. To date, however, the dental profession has lagged behind other areas of biomedicine in developing a commonly accepted, standardized ontology to support the representation of dental knowledge and information. This paper attempts to identify some of the potential uses of dental ontologies as part of an effort to motivate the development of ontologies for the dental domain. The identified uses of dental ontologies include support for advanced data analysis and knowledge discovery capabilities, the implementation of novel education and training technologies, the development of information exchange and interoperability solutions, the better integration of scientific and clinical evidence into clinical decision-making, and the development of better clinical decision support systems. Some of the social issues raised by these uses include the ethics of using patient data without consent, the role played by ontologies in enforcing compliance with regulatory criteria and legislative constraints, and the extent to which the advent of the Semantic Web introduces new training requirements for dental students. Some of the technological issues relate to the need to extract information from a variety of resources (for example, natural language texts), the need to automatically annotate information resources with ontology elements, and the need to establish mappings between a variety of existing dental terminologies

    Ontology for Representing Human Needs

    Get PDF
    Need satisfaction plays a fundamental role in human well-being. Hence understanding citizens' needs is crucial for developing a successful social and economic policy. This notwithstanding, the concept of need has not yet found its place in information systems and online tools. Furthermore, assessing needs itself remains a labor-intensive, mostly offline activity, where only a limited support by computational tools is available. In this paper, we make the first step towards employing need management in the design of information systems supporting participation and participatory innovation by proposing OpeNeeD, a family of ontologies for representing human needs data. As a proof of concept, OpeNeeD has been used to represent, enrich and query the results of a needs assessment study in a local citizen community in one of the Vienna districts. The proposed ontology will facilitate such studies and enable the representation of citizens' needs as Linked Data, fostering its co-creation and incentivizing the use of Open Data and services based on it

    A benchmark suite for evaluating the performance of the WebODE Ontology Engineering Platform

    Get PDF
    Ontology tools play a key role in the development and maintenance of the Semantic Web. Hence, we need in one hand to objectively evaluate these tools, in order to analyse whether they can deal with actual and future requirements, and in the other hand to develop benchmark suites for performing these evaluations. In this paper, we describe the method we have followed to design and implement a benchmark suite for evaluating the performance of the WebODE ontology engineering workbench, along with the conclusions obtained after using this benchmark suite for evaluating WebODE

    Providing Multilinguality to Ontologies: An Overview

    Get PDF
    Ontologies play a decisive role in the development of the Semantic Web, since they are able to model the knowledge of a specific domain in a machine readable way. However, the need to provide multilinguality to ontologies poses new challenges in the Ontology Engineering research. In this paper we attempt to offer an overview of available strategies for the localizing process of lexical resources and ontologies. Detailed steps in the localizing process of the multilingual lexicon EuroWordNet, the multilingual ontology GENOMA-KB, and the ontology translation software LabelTranslator are presented with the aim of illustrating three different localization approaches, their main characteristics and limitation

    Harnessing the power of unified metadata in an ontology repository: The case of AgroPortal

    Get PDF
    As any resources, ontologies, thesaurus, vocabularies and terminologies need to be described with relevant metadata to facilitate their identification, selection and reuse. For ontologies to be FAIR, there is a need for metadata authoring guidelines and for harmonization of existing metadata vocabularies—taken independently none of them can completely describe an ontology. Ontology libraries and repositories also have to play an important role. Indeed, some metadata properties are intrinsic to the ontology (name, license, description); other information, such as community feedbacks or relations to other ontologies are typically information that an ontology library shall capture, populate and consolidate to facilitate the processes of identifying and selecting the right ontology(ies) to use. We have studied ontology metadata practices by: (1) analyzing metadata annotations of 805 ontologies; (2) reviewing the most standard and relevant vocabularies (23 totals) currently available to describe metadata for ontologies (such as Dublin Core, Ontology Metadata Vocabulary, VoID, etc.); (3) comparing different metadata implementation in multiple ontology libraries or repositories. We have then built a new metadata model for our AgroPortal vocabulary and ontology repository, a platform dedicated to agronomy based on the NCBO BioPortal technology. AgroPortal now recognizes 346 properties from existing metadata vocabularies that could be used to describe different aspects of ontologies: intrinsic descriptions, people, date, relations, content, metrics, community, administration, and access. We use them to populate an internal model of 127 properties implemented in the portal and harmonized for all the ontologies. We—and AgroPortal's users—have spent a significant amount of time to edit and curate the metadata of the ontologies to offer a better synthetized and harmonized information and enable new ontology identification features. Our goal was also to facilitate the comprehension of the agronomical ontology landscape by displaying diagrams and charts about all the ontologies on the portal. We have evaluated our work with a user appreciation survey which confirms the new features are indeed relevant and helpful to ease the processes of identification and selection of ontologies. This paper presents how to harness the potential of a complete and unified metadata model with dedicated features in an ontology repository; however, the new AgroPortal's model is not a new vocabulary as it relies on preexisting ones. A generalization of this work is studied in a community-driven standardization effort in the context of the RDA Vocabulary and Semantic Services Interest Group

    Heuristic Ranking in Tightly Coupled Probabilistic Description Logics

    Full text link
    The Semantic Web effort has steadily been gaining traction in the recent years. In particular,Web search companies are recently realizing that their products need to evolve towards having richer semantic search capabilities. Description logics (DLs) have been adopted as the formal underpinnings for Semantic Web languages used in describing ontologies. Reasoning under uncertainty has recently taken a leading role in this arena, given the nature of data found on theWeb. In this paper, we present a probabilistic extension of the DL EL++ (which underlies the OWL2 EL profile) using Markov logic networks (MLNs) as probabilistic semantics. This extension is tightly coupled, meaning that probabilistic annotations in formulas can refer to objects in the ontology. We show that, even though the tightly coupled nature of our language means that many basic operations are data-intractable, we can leverage a sublanguage of MLNs that allows to rank the atomic consequences of an ontology relative to their probability values (called ranking queries) even when these values are not fully computed. We present an anytime algorithm to answer ranking queries, and provide an upper bound on the error that it incurs, as well as a criterion to decide when results are guaranteed to be correct.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Ontology population for open-source intelligence: A GATE-based solution

    Get PDF
    Open-Source INTelligence is intelligence based on publicly available sources such as news sites, blogs, forums, etc. The Web is the primary source of information, but once data are crawled, they need to be interpreted and structured. Ontologies may play a crucial role in this process, but because of the vast amount of documents available, automatic mechanisms for their population are needed, starting from the crawled text. This paper presents an approach for the automatic population of predefined ontologies with data extracted from text and discusses the design and realization of a pipeline based on the General Architecture for Text Engineering system, which is interesting for both researchers and practitioners in the field. Some experimental results that are encouraging in terms of extracted correct instances of the ontology are also reported. Furthermore, the paper also describes an alternative approach and provides additional experiments for one of the phases of our pipeline, which requires the use of predefined dictionaries for relevant entities. Through such a variant, the manual workload required in this phase was reduced, still obtaining promising results
    • …
    corecore