396 research outputs found

    Drone-based Integration of Hyperspectral Imaging and Magnetics for Mineral Exploration

    Get PDF
    The advent of unoccupied aerial systems (UAS) as disruptive technology has a lasting impact on remote sensing, geophysics and most geosciences. Small, lightweight, and low-cost UAS enable researchers and surveyors to acquire earth observation data in higher spatial and spectral resolution as compared to airborne and satellite data. UAS-based applications range from rapid topographic mapping using photogrammetric techniques to hyperspectral and geophysical measurements of surface and subsurface geology. UAS surveys contribute to identifying metal deposits, monitoring of mine sites and can reveal arising environmental issues associated with mining. Further, affordable UAS technology will boost exploration data availability and expertise in the global south. This thesis investigates the application of UAS-based multi-sensor data for mineral exploration, in particular the integration of hyperspectral imagers, magnetometers and digital cameras (covering the visible red, green, blue light spectrum). UAS-based research is maturing, however the aforementioned methods are not unified effectively. RGB-based photogrammetry is used to investigate topography and surface texture. Image spectrometers measure mineral-specific surface signatures. Magnetometers detect geomagnetic field changes caused by magnetic minerals at surface and depth. The integration of such UAS sensor-based methods in this thesis augments exploration potential with non-invasive, high-resolution, safe, rapid and practical survey methods. UAS-based surveying acquired, processed and integrated data from three distinct test sites. The sites are located in Finland (Fe-Ti-V at Otanmäki; apatite at Siilinjärvi) and Greenland (Ni-Cu-PGE at Qullissat, Disko Island) and were chosen as geologically diverse areas in subarctic to arctic environments. Restricted accessibility, unfavourable atmospheric conditions, dark rocks, debris and vegetation cover and low solar illumination were common features. While the topography in Finland was moderately flat, a steep landscape challenged the Greenland field work. These restraints meant that acquisitions varied from site to site and how data was integrated and interpreted is dependent on the commodity of interest. Iron-based spectral absorption and magnetic mineral response were detected using hyperspectral and magnetic surveying in Otanmäki. Multi-sensor-based image feature detection and classification combined with magnetic forward modelling enabled seamless geologic mapping in Siilinjärvi. Detailed magnetic inversion and multispectral photogrammetry led to the construction of a comprehensive 3D model of magmatic exploration targets in Greenland. Ground truth at different intensity was employed to verify UAS-based data interpretations during all case studies. Laboratory analysis was applied when deemed necessary to acquire geologic-mineralogic validation (e.g., X-ray diffraction and optical microscopy for mineral identification to establish lithologic domains, magnetic susceptibility measurements for subsurface modelling), for example for trace amounts of magnetite in carbonatite (Siilinjärvi) and native iron occurrence in basalt (Qullissat). Technical achievements were the integration of a multicopter-based prototype fluxgate-magnetometer data from different survey altitudes with ground truth, and a feasibility study with a high-speed multispectral image system for fixed-wing UAS. The employed case studies transfer the experiences made towards general recommendations for UAS application-based multi-sensor integration. This thesis highlights the feasibility of UAS-based surveying at target scale (1–50 km2) and solidifies versatile survey approaches for multi-sensor integration.Ziel dieser Arbeit war es, das Potenzial einer Drohnen-basierten Mineralexploration mit Multisensor-Datenintegration unter Verwendung optisch-spektroskopischer und magnetischer Methoden zu untersuchen, um u. a. übertragbare Arbeitsabläufe zu erstellen. Die untersuchte Literatur legt nahe, dass Drohnen-basierte Bildspektroskopie und magnetische Sensoren ein ausgereiftes technologisches Niveau erreichen und erhebliches Potenzial für die Anwendungsentwicklung bieten, aber es noch keine ausreichende Synergie von hyperspektralen und magnetischen Methoden gibt. Diese Arbeit umfasste drei Fallstudien, bei denen die Drohnengestützte Vermessung von geologischen Zielen in subarktischen bis arktischen Regionen angewendet wurde. Eine Kombination von Drohnen-Technologie mit RGB, Multi- und Hyperspektralkameras und Magnetometern ist vorteilhaft und schuf die Grundlage für eine integrierte Modellierung in den Fallstudien. Die Untersuchungen wurden in einem Gelände mit flacher und zerklüfteter Topografie, verdeckten Zielen und unter oft schlechten Lichtverhältnissen durchgeführt. Unter diesen Bedingungen war es das Ziel, die Anwendbarkeit von Drohnen-basierten Multisensordaten in verschiedenen Explorationsumgebungen zu bewerten. Hochauflösende Oberflächenbilder und Untergrundinformationen aus der Magnetik wurden fusioniert und gemeinsam interpretiert, dabei war eine selektive Gesteinsprobennahme und Analyse ein wesentlicher Bestandteil dieser Arbeit und für die Validierung notwendig. Für eine Eisenerzlagerstätte wurde eine einfache Ressourcenschätzung durchgeführt, indem Magnetik, bildspektroskopisch-basierte Indizes und 2D-Strukturinterpretation integriert wurden. Fotogrammetrische 3D-Modellierung, magnetisches forward-modelling und hyperspektrale Klassifizierungen wurden für eine Karbonatit-Intrusion angewendet, um einen kompletten Explorationsabschnitt zu erfassen. Eine Vektorinversion von magnetischen Daten von Disko Island, Grönland, wurden genutzt, um großräumige 3D-Modelle von undifferenzierten Erdrutschblöcken zu erstellen, sowie diese zu identifizieren und zu vermessen. Die integrierte spektrale und magnetische Kartierung in komplexen Gebieten verbesserte die Erkennungsrate und räumliche Auflösung von Erkundungszielen und reduzierte Zeit, Aufwand und benötigtes Probenmaterial für eine komplexe Interpretation. Der Prototyp einer Multispektralkamera, gebaut für eine Starrflügler-Drohne für die schnelle Vermessung, wurde entwickelt, erfolgreich getestet und zum Teil ausgewertet. Die vorgelegte Arbeit zeigt die Vorteile und Potenziale von Multisensor-Drohnen als praktisches, leichtes, sicheres, schnelles und komfortabel einsetzbares geowissenschaftliches Werkzeug, um digitale Modelle für präzise Rohstofferkundung und geologische Kartierung zu erstellen

    Component Decomposition-Based Hyperspectral Resolution Enhancement for Mineral Mapping

    Get PDF
    Combining both spectral and spatial information with enhanced resolution provides not only elaborated qualitative information on surfacing mineralogy but also mineral interactions of abundance, mixture, and structure. This enhancement in the resolutions helps geomineralogic features such as small intrusions and mineralization become detectable. In this paper, we investigate the potential of the resolution enhancement of hyperspectral images (HSIs) with the guidance of RGB images for mineral mapping. In more detail, a novel resolution enhancement method is proposed based on component decomposition. Inspired by the principle of the intrinsic image decomposition (IID) model, the HSI is viewed as the combination of a reflectance component and an illumination component. Based on this idea, the proposed method is comprised of several steps. First, the RGB image is transformed into the luminance component, blue-difference and red-difference chroma components (YCbCr), and the luminance channel is considered as the illumination component of the HSI with an ideal high spatial resolution. Then, the reflectance component of the ideal HSI is estimated with the downsampled HSI image and the downsampled luminance channel. Finally, the HSI with high resolution can be reconstructed by utilizing the obtained illumination and the reflectance components. Experimental results verify that the fused results can successfully achieve mineral mapping, producing better results qualitatively and quantitatively over single sensor data

    Caracterização e estudo comparativo de exsudações de hidrocarbonetos e plays petrolíferos em bacias terrestres das regiões central do Irã e sudeste do Brasil usando sensoriamento remoto espectral

    Get PDF
    Orientador: Carlos Roberto de Souza FilhoTese (doutorado) - Universidade Estadual de Campinas, Instituto de GeociênciasResumo: O objetivo desta pesquisa foi explorar as assinaturas de exsudações de hidrocarbonetos na superfície usando a tecnologia de detecção remota espectral. Isso foi alcançado primeiro, realizando uma revisão abrangente das capacidades e potenciais técnicas de detecção direta e indireta. Em seguida, a técnica foi aplicada para investigar dois locais de teste localizados no Irã e no Brasil, conhecidos por hospedar sistemas ativos de micro-exsudações e afloramentos betuminosos, respectivamente. A primeira área de estudo está localizada perto da cidade de Qom (Irã), e está inserida no campo petrolífero Alborz, enterrado sob sedimentos datados do Oligoceno da Formação Upper Red. O segundo local está localizado perto da cidade de Anhembi (SP), na margem oriental da bacia do Paraná, no Brasil, e inclui acumulações de betume em arenitos triássicos da Formação Pirambóia. O trabalho na área de Qom integrou evidências de (i) estudos petrográficos e geoquímicos em laboratório, (ii) investigações de afloramentos em campo, e (iii) mapeamento de anomalia em larga escala através de conjuntos de dados multi-espectrais ASTER e Sentinel-2. O resultado deste estudo se trata de novos indicadores mineralógicos e geoquímicos para a exploração de micro-exsudações e um modelo de micro-exsudações atualizado. Durante este trabalho, conseguimos desenvolver novas metodologias para análise de dados espectroscópicos. Através da utilização de dados simulados, indicamos que o instrumento de satélite WorldView-3 tem potencial para detecção direta de hidrocarbonetos. Na sequência do estudo, dados reais sobre afloramentos de arenitos e óleo na área de Anhembi foram investigados. A área foi fotografada novamente no chão e usando o sistema de imagem hiperespectral AisaFENIX. Seguiu-se estudos e amostragem no campo,incluindo espectroscopia de alcance fechado das amostras no laboratório usando instrumentos de imagem (ou seja, sisuCHEMA) e não-imagem (ou seja, FieldSpec-4). O estudo demonstrou que uma abordagem espectroscópica multi-escala poderia fornecer uma imagem completa das variações no conteúdo e composição do betume e minerais de alteração que acompanham. A assinatura de hidrocarbonetos, especialmente a centrada em 2300 nm, mostrou-se consistente e comparável entre as escalas e capaz de estimar o teor de betume de areias de petróleo em todas as escalas de imagemAbstract: The objective of this research was to explore for the signatures of seeping hydrocarbons on the surface using spectral remote sensing technology. It was achieved firstly by conducting a comprehensive review of the capacities and potentials of the technique for direct and indirect seepage detection. Next, the technique was applied to investigate two distinctive test sites located in Iran and Brazil known to retain active microseepage systems and bituminous outcrops, respectively. The first study area is located near the city of Qom in Iran, and consists of Alborz oilfield buried under Oligocene sediments of the Upper-Red Formation. The second site is located near the town of Anhembi on the eastern edge of the Paraná Basin in Brazil and includes bitumen accumulations in the Triassic sandstones of the Pirambóia Formation. Our work in Qom area integrated evidence from (i) petrographic, spectroscopic, and geochemical studies in the laboratory, (ii) outcrop investigations in the field, and (iii) broad-scale anomaly mapping via orbital remote sensing data. The outcomes of this study was novel mineralogical and geochemical indicators for microseepage characterization and a classification scheme for the microseepage-induced alterations. Our study indicated that active microseepage systems occur in large parts of the lithofacies in Qom area, implying that the extent of the petroleum reservoir is much larger than previously thought. During this work, we also developed new methodologies for spectroscopic data analysis and processing. On the other side, by using simulated data, we indicated that WorldView-3 satellite instrument has the potential for direct hydrocarbon detection. Following this demonstration, real datasets were acquired over oil-sand outcrops of the Anhembi area. The area was further imaged on the ground and from the air by using an AisaFENIX hyperspectral imaging system. This was followed by outcrop studies and sampling in the field and close-range spectroscopy in the laboratory using both imaging (i.e. sisuCHEMA) and nonimaging instruments. The study demonstrated that a multi-scale spectroscopic approach could provide a complete picture of the variations in the content and composition of bitumen and associated alteration mineralogy. The oil signature, especially the one centered at 2300 nm, was shown to be consistent and comparable among scales, and capable of estimating the bitumen content of oil-sands at all imaging scalesDoutoradoGeologia e Recursos NaturaisDoutor em Geociências2015/06663-7FAPES

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    Aiding the conservation of two wooden Buddhist sculptures with 3D imaging and spectroscopic techniques

    Get PDF
    The conservation of Buddhist sculptures that were transferred to Europe at some point during their lifetime raises numerous questions: while these objects historically served a religious, devotional purpose, many of them currently belong to museums or private collections, where they are detached from their original context and often adapted to western taste. A scientific study was carried out to address questions from Museo d'Arte Orientale of Turin curators in terms of whether these artifacts might be forgeries or replicas, and how they may have transformed over time. Several analytical techniques were used for materials identification and to study the production technique, ultimately aiming to discriminate the original materials from those added within later interventions

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management
    corecore