221 research outputs found

    Ranking Medical Subject Headings using a factor graph model.

    Get PDF
    Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios

    MeSH indexing based on automatically generated summaries

    Get PDF
    BACKGROUND: MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. RESULTS: We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. CONCLUSIONS: Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading

    Automated annotation of chemical names in the literature with tunable accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant portion of the biomedical and chemical literature refers to small molecules. The accurate identification and annotation of compound name that are relevant to the topic of the given literature can establish links between scientific publications and various chemical and life science databases. Manual annotation is the preferred method for these works because well-trained indexers can understand the paper topics as well as recognize key terms. However, considering the hundreds of thousands of new papers published annually, an automatic annotation system with high precision and relevance can be a useful complement to manual annotation.</p> <p>Results</p> <p>An automated chemical name annotation system, MeSH Automated Annotations (MAA), was developed to annotate small molecule names in scientific abstracts with tunable accuracy. This system aims to reproduce the MeSH term annotations on biomedical and chemical literature that would be created by indexers. When comparing automated free text matching to those indexed manually of 26 thousand MEDLINE abstracts, more than 40% of the annotations were false-positive (FP) cases. To reduce the FP rate, MAA incorporated several filters to remove "incorrect" annotations caused by nonspecific, partial, and low relevance chemical names. In part, relevance was measured by the position of the chemical name in the text. Tunable accuracy was obtained by adding or restricting the sections of the text scanned for chemical names. The best precision obtained was 96% with a 28% recall rate. The best performance of MAA, as measured with the F statistic was 66%, which favorably compares to other chemical name annotation systems.</p> <p>Conclusions</p> <p>Accurate chemical name annotation can help researchers not only identify important chemical names in abstracts, but also match unindexed and unstructured abstracts to chemical records. The current work is tested against MEDLINE, but the algorithm is not specific to this corpus and it is possible that the algorithm can be applied to papers from chemical physics, material, polymer and environmental science, as well as patents, biological assay descriptions and other textual data.</p

    Opracowanie w chmurze czy chmury nad opracowaniem? Automatyczne indeksowanie dokumentów a biblioteki

    Get PDF
    The paper presents recent research in the field of automatic indexing of text documents, inter alia, in libraries, and the attitudes of Polish academic librarians towards the computerization of the subject cataloging. The methods of literature review and survey were used along with the analysis of Polish academic curricula in the field of library and information science. The article demonstrates on several examples that the similarities in document layout and the topical diversity or homogeneity are the key factors in the computerization of cataloging. The survey conducted amongst Polish subject indexing specialists from academic libraries shows that they have highly limited knowledge about automatic indexing. The results are then compared with the findings of the study on German- and English-speaking librarians’ opinions about automatic subject indexing. They are similar to the outcomes of the previous research by Alice Keller into the attitudes of, among others, the English-speaking subjects

    The road from manual to automatic semantic indexing of biomedical literature: a 10 years journey

    Get PDF
    Biomedical experts are facing challenges in keeping up with the vast amount of biomedical knowledge published daily. With millions of citations added to databases like MEDLINE/PubMed each year, efficiently accessing relevant information becomes crucial. Traditional term-based searches may lead to irrelevant or missed documents due to homonyms, synonyms, abbreviations, or term mismatch. To address this, semantic search approaches employing predefined concepts with associated synonyms and relations have been used to expand query terms and improve information retrieval. The National Library of Medicine (NLM) plays a significant role in this area, indexing citations in the MEDLINE database with topic descriptors from the Medical Subject Headings (MeSH) thesaurus, enabling advanced semantic search strategies to retrieve relevant citations, despite synonymy, and polysemy of biomedical terms. Over time, advancements in semantic indexing have been made, with Machine Learning facilitating the transition from manual to automatic semantic indexing in the biomedical literature. The paper highlights the journey of this transition, starting with manual semantic indexing and the initial efforts toward automatic indexing. The BioASQ challenge has served as a catalyst in revolutionizing the domain of semantic indexing, further pushing the boundaries of efficient knowledge retrieval in the biomedical field

    Review of Indexing Techniques Applied in Information Retrieval

    Get PDF
    Indexing is one of the important tasks of Information Retrieval that can be applied to any form of data, generated from the web, databases, etc. As the size of corpora increases, indexing becomes too time consuming and labor intensive, therefore, the introduction of computer aided indexer. A review of indexing techniques, both human and automatic indexing has been done in this paper. This paper gives an outline of the use of automatic indexing by discussing various hashing techniques including fuzzy finger printing and locality-sensitive hashing. Two different processes of matching that are used in automatic subject indexing are also reviewed. Accepting the need of automatic indexing in a possible replacement to manual indexing, studies in the development of automatic indexing tools must continu

    GeneRIF indexing: sentence selection based on machine learning

    Get PDF
    corecore