1,412 research outputs found

    Visual object-oriented development of parallel applications

    Get PDF
    PhD ThesisDeveloping software for parallel architectures is a notoriously difficult task, compounded further by the range of available parallel architectures. There has been little research effort invested in how to engineer parallel applications for more general problem domains than the traditional numerically intensive domain. This thesis addresses these issues. An object-oriented paradigm for the development of general-purpose parallel applications, with full lifecycle support, is proposed and investigated, and a visual programming language to support that paradigm is developed. This thesis presents experiences and results from experiments with this new model for parallel application development.Engineering and Physical Sciences Research Council

    Boundary Contour System and Feature Contour System

    Full text link
    When humans gaze upon a scene, our brains rapidly combine several different types of locally ambiguous visual information to generate a globally consistent and unambiguous representation of Form-And-Color-And-DEpth, or FACADE. This state of affairs raises the question: What new computational principles and mechanisms are needed to understand how multiple sources of visual information cooperate automatically to generate a percept of 3-dimensional form? This chapter reviews some modeling work aimed at developing such a general-purpose vision architecture. This architecture clarifies how scenic data about boundaries, textures, shading, depth, multiple spatial scales, and motion can be cooperatively synthesized in real-time into a coherent representation of 3-dimensional form. It embodies a new vision theory that attempts to clarify the functional organzation of the visual brain from the lateral geniculate nucleus (LGN) to the extrastriate cortical regions V4 and MT. Moreover, the same processes which are useful towards explaining how the visual cortex processes retinal signals are equally valuable for processing noisy multidimensional data from artificial sensors, such as synthetic aperture radar, laser radar, multispectral infrared, magnetic resonance, and high-altitude photographs. These processes generate 3-D boundary and surface representations of a scene.Office of Naval Research (N00011-95-I-0409, N00014-95-I-0657

    Beam Dynamics in High Intensity Cyclotrons Including Neighboring Bunch Effects: Model, Implementation and Application

    Full text link
    Space charge effects, being one of the most significant collective effects, play an important role in high intensity cyclotrons. However, for cyclotrons with small turn separation, other existing effects are of equal importance. Interactions of radially neighboring bunches are also present, but their combined effects has not yet been investigated in any great detail. In this paper, a new particle in cell based self-consistent numerical simulation model is presented for the first time. The model covers neighboring bunch effects and is implemented in the three-dimensional object-oriented parallel code OPAL-cycl, a flavor of the OPAL framework. We discuss this model together with its implementation and validation. Simulation results are presented from the PSI 590 MeV Ring Cyclotron in the context of the ongoing high intensity upgrade program, which aims to provide a beam power of 1.8 MW (CW) at the target destination

    Run-time support for parallel object-oriented computing: the NIP lazy task creation technique and the NIP object-based software distributed shared memory

    Get PDF
    PhD ThesisAdvances in hardware technologies combined with decreased costs have started a trend towards massively parallel architectures that utilise commodity components. It is thought unreasonable to expect software developers to manage the high degree of parallelism that is made available by these architectures. This thesis argues that a new programming model is essential for the development of parallel applications and presents a model which embraces the notions of object-orientation and implicit identification of parallelism. The new model allows software engineers to concentrate on development issues, using the object-oriented paradigm, whilst being freed from the burden of explicitly managing parallel activity. To support the programming model, the semantics of an execution model are defined and implemented as part of a run-time support system for object-oriented parallel applications. Details of the novel techniques from the run-time system, in the areas of lazy task creation and object-based, distributed shared memory, are presented. The tasklet construct for representing potentially parallel computation is introduced and further developed by this thesis. Three caching techniques that take advantage of memory access patterns exhibited in object-oriented applications are explored. Finally, the performance characteristics of the introduced run-time techniques are analysed through a number of benchmark applications

    WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    Full text link
    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schr\"odinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry.The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry.The present Part I deals with the description of closed quantum systems in terms of Schr\"odinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization.The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics.The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found
    • …
    corecore