25,969 research outputs found

    Phyloinformatics in the age of Wikipedia

    Get PDF
    This talk describes a mapping between the NCBI taxonomy database and Wikipedia. These two databases were chosen because the NCBI taxonomy contains all the taxa for which sequences are publicly available, and for many taxa Wikipedia is the first site returned in a Google search on that taxon's scientific name. The NCBI web pages for nearly 53,000 NCBI taxa now have a link to the corresponding page in Wikipedia

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data retrieval systems and computational resources for the analysis of data in GenBank and other biological data made available through NCBI's website. NCBI resources include Entrez, Entrez Programming Utilities, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD) and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea

    Get PDF
    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    Soft topographic map for clustering and classification of bacteria

    Get PDF
    In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database

    Evaluation of 16S next-generation sequencing of hypervariable region 4 in wastewater samples: An unsuitable approach for bacterial enteric pathogen identification

    Get PDF
    Recycled wastewater can carry human-infectious microbial pathogens and therefore wastewater treatment strategies must effectively eliminate pathogens before recycled wastewater is used to supplement drinking and agricultural water supplies. This study characterised the bacterial composition of four wastewater treatment plants (WWTPs) (three waste stabilisation ponds and one oxidation ditch WWTP using activated sludge treatment) in Western Australia. The hypervariable region 4 (V4) of the bacterial 16S rRNA (16S) gene was sequenced using next-generation sequencing (NGS) on the Illumina MiSeq platform. Sequences were pre-processed in USEARCH v10.0 and denoised into zero-radius taxonomic units (ZOTUs) with UNOISE3. Taxonomy was assigned to the ZOTUs using QIIME 2 and the Greengenes database and cross-checked with the NCBI nr/nt database. Bacterial composition of all WWTPs and treatment stages (influent, intermediate and effluent) were dominated by Proteobacteria (29.0-87.4%), particularly Betaproteobacteria (9.0-53.5%) and Gammaproteobacteria (8.6-34.6%). Nitrifying bacteria (Nitrospira spp.) were found only in the intermediate and effluent of the oxidation ditch WWTP, and denitrifying and floc-forming bacteria were detected in all WWTPs, particularly from the families Comamonadaceae and Rhodocyclales. Twelve pathogens were assigned taxonomy by the Greengenes database, but comparison of sequences from genera and families known to contain pathogens to the NCBI nr/nt database showed that only three pathogens (Arcobacter venerupis, Laribacter hongkongensis and Neisseria canis) could be identified in the dataset at the V4 region. Importantly, Enterobacteriaceae genera could not be differentiated. Family level taxa assigned by Greengenes database agreed with NCBI nr/nt in most cases, however, BLAST analyses revealed erroneous taxa in Greengenes database. This study highlights the importance of validating taxonomy of NGS sequences with databases such as NCBI nr/nt, and recommends including the V3 region of 16S in future short amplicon NGS studies that aim to identify bacterial enteric pathogens, as this will improve taxonomic resolution of most, but not all, Enterobacteriaceae species

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank(®) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link(BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Viral Genotyping Tools, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at

    phiSITE: database of gene regulation in bacteriophages

    Get PDF
    We have developed phiSITE, database of gene regulation in bacteriophages. To date it contains detailed information about more than 700 experimentally confirmed or predicted regulatory elements (promoters, operators, terminators and attachment sites) from 32 bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. The database is manually curated, the data are collected mainly form scientific papers, cross-referenced with other database resources (EMBL, UniProt, NCBI taxonomy database, NCBI Genome, ICTVdb, PubMed Central) and stored in SQL based database system. The system provides full text search for regulatory elements, graphical visualization of phage genomes and several export options. In addition, visualizations of gene regulatory networks for five phages (Bacillus phage GA-1, Enterobacteria phage lambda, Enterobacteria phage Mu, Enterobacteria phage P2 and Mycoplasma phage P1) have been defined and made available. The phiSITE is accessible at http://www.phisite.org/
    corecore