31,709 research outputs found

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    A novel cost effective and high-throughput isolation and identification method for marine microalgae

    Get PDF
    Background: Marine microalgae are of major ecologic and emerging economic importance. Biotechnological screening schemes of microalgae for specific traits and laboratory experiments to advance our knowledge on algal biology and evolution strongly benefit from culture collections reflecting a maximum of the natural inter- and intraspecific diversity. However, standard procedures for strain isolation and identification, namely DNA extraction, purification, amplification, sequencing and taxonomic identification still include considerable constraints increasing the time required to establish new cultures. Results: In this study, we report a cost effective and high-throughput isolation and identification method for marine microalgae. The throughput was increased by applying strain isolation on plates and taxonomic identification by direct PCR (dPCR) of phylogenetic marker genes in combination with a novel sequencing electropherogram based screening method to assess the taxonomic diversity and identity of the isolated cultures. For validation of the effectiveness of this approach, we isolated and identified a range of unialgal cultures from natural phytoplankton communities sampled in the Arctic Ocean. These cultures include the isolate of a novel marine Chlorophyceae strain among several different diatoms. Conclusions: We provide an efficient and effective approach leading from natural phytoplankton communities to isolated and taxonomically identified algal strains in only a few weeks. Validated with sensitive Arctic phytoplankton, this approach overcomes the constraints of standard molecular characterisation and establishment of unialgal cultures

    Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae

    Get PDF
    Verticillium nonalfalfae is a fungal plant pathogen that causes wilt disease by colonizing the vascular tissues of host plants. The disease induced by hop isolates of V. nonalfalfae manifests in two different forms, ranging from mild symptoms to complete plant dieback, caused by mild and lethal pathotypes, respectively. Pathogenicity variations between the causal strains have been attributed to differences in genomic sequences and perhaps also to differences in their mitochondrial genomes. We used data from our recent Illumina NGS-based project of genome sequencing V. nonalfalfae to study the mitochondrial genomes of its different strains. The aim of the research was to prepare a V. nonalfalfae reference mitochondrial genome and to determine its phylogenetic placement in the fungal kingdom. The resulting 26,139 bp circular DNA molecule contains a full complement of the 14 "standard" fungal mitochondrial protein-coding genes of the electron transport chain and ATP synthase subunits, together with a small rRNA subunit, a large rRNA subunit, which contains ribosomal protein S3 encoded within a type IA-intron and 26 tRNAs. Phylogenetic analysis of this mitochondrial genome placed it in the Verticillium spp. lineage in the Glomerellales group, which is also supported by previous phylogenetic studies based on nuclear markers. The clustering with the closely related Verticillium dahliae mitochondrial genome showed a very conserved synteny and a high sequence similarity. Two distinguishing mitochondrial genome features were also found-a potential long non-coding RNA (orf414) contained only in the Verticillium spp. of the fungal kingdom, and a specific fragment length polymorphism observed only in V. dahliae and V. nubilum of all the Verticillium spp., thus showing potential as a species specific biomarker

    Expression domain of Alk2 BMP receptor in chick embryos by in situ hybridization

    Get PDF

    Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to altered dysbindin-1 gene expression

    Get PDF
    DTNBP1 (dystrobrevin binding protein 1) remains one of the top candidate genes in schizophrenia. Reduced expression of this gene and the protein it encodes, dysbindin-1, has been reported in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia cases. It has not been established, however, if all dysbindin-1 isoforms are reduced in the DLPFC or if the reduction is associated with reduced DTNBP1 gene expression. Using Western blotting of whole-tissue lysates of the DLPFC with antibodies differentially sensitive to the three major isoforms of this protein (dysbindin-1A, -1B, and -1C), we found no significant differences between our schizophrenia cases and matched controls in dysbindin-1A or -1B, but did find a mean 46% reduction in dysbindin-1C in 71% of 28 case-control pairs (p = 0.022). This occurred in the absence of the one DTNBP1 risk haplotype for schizophrenia reported in the US and without alteration in levels of dysbindin-1C transcripts. Conversely, the absence of changes in the dysbindin-1A and -1B isoforms was accompanied by increased levels of their transcripts. We thus found no correspondence between alterations in dysbindin-1 gene and protein expression, the latter of which might be due to posttranslational modifications such as ubiquitination. Reduced DLPFC dysbindin-1C in schizophrenia probably occurs in PSDs, where we find dysbindin-1C to be heavily concentrated in the human brain. Given known postsynaptic effects of dysbindin-1 reductions in the rodent homolog of the prefrontal cortex, these findings suggest that reduced dysbindin-1C in the DLPFC may contribute to cognitive deficits of schizophrenia by promoting NMDA receptor hypofunction

    HTR4 gene structure and altered expression in the developing lung

    Get PDF
    Background: Meta-analyses of genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) spanning the 5-hydroxytryptamine receptor 4 (5-HT4R) gene (HTR4) associated with lung function. The aims of this study were to i) investigate the expression profile of HTR4 in adult and fetal lung tissue and cultured airway cells, ii) further define HTR4 gene structure and iii) explore the potential functional implications of key SNPs using a bioinformatic approach

    Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest

    Get PDF
    Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control
    corecore