569 research outputs found

    Atmospheric Instrument Systems and Technology in the Goddard Earth Sciences Division

    Get PDF
    Studies of the Earths atmosphere require a comprehensive set of observations that rely on instruments flown on spacecraft, aircraft, and balloons as well as those deployed on the surface. Within NASAs Goddard Space Flight Center (GSFC) Earth Sciences Division-Atmospheres, laboratories and offices maintain an active program of instrument system development and observational studies that provide: 1) information leading to a basic understanding of atmospheric processes and their relationships with the Earths climate system, 2) prototypes for future flight instruments, 3) instruments to serve as calibration references for satellite missions, and 4) instruments for future field validation campaigns that support ongoing space missions. Our scientists participate in all aspects of instrument activity, including component and system design, calibration techniques, retrieval algorithm development, and data processing systems. The Atmospheres Program has well-equipped labs and test equipment to support the development and testing of instrument systems, such as a radiometric calibration and development facility to support the calibration of ultraviolet and visible (UV/VIS), space-borne solar backscatter instruments. This document summarizes the features and characteristics of 46 instrument systems that currently exist or are under development. The report is organized according to active, passive, or in situ remote sensing across the electromagnetic spectrum. Most of the systems are considered operational in that they have demonstrated performance in the field and are capable of being deployed on relatively short notice. Other systems are under study or of low technical readiness level (TRL). The systems described herein are designed mainly for surface or airborne platforms. However, two Cubesat systems also have been developed through collaborative efforts. The Solar Disk Sextant (SDS) is the single balloon-borne instrument. The lidar systems described herein are designed to retrieve clouds, aerosols, methane, water vapor pressure, temperature, and winds. Most of the lasers operate at some wavelength combination of 355, 532, and 1064 nm. The various systems provide high sensitivity measurements based on returns from backscatter or Raman scattering including intensity and polarization. Measurements of the frequency (Doppler) shift of light scattered from various atmospheric constitutes can also be made. Microwave sensors consist of both active (radar) and passive (radiometer) systems. These systems are important for studying processes involving water in various forms. The dielectric properties of water affect microwave brightness temperatures, which are used to retrieve atmospheric parameters such as rainfall rate and other key elements of the hydrological cycle. Atmosphere radar systems operate in the range from 9.6 GHz to 94 GHz and have measurement accuracies from -5 to 1 dBZ; radiometers operate in the 50 GHz to 874 GHz range with accuracies from 0.5 to 1 degree K; conical and cross-track scan modes are used. Our passive optical sensors, consisting of radiometers and spectrometers, collectively operate from the UV into the infrared. These systems measure energy fluxes and atmospheric parameters such as trace gases, aerosols, cloud properties, or altitude profiles of various species. Imager spatial resolution varies from 37 m to 400 m depending on altitude; spectral resolution is as small as 0.5 nm. Many of the airborne systems have been developed to fly on multiple aircraft

    Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Get PDF
    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown

    Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Get PDF
    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed

    HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    Get PDF
    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at high-altitudes using low peak power transmitters and pulse compression. The hardware will be described along with the methods and concepts for the system design. Finally, we will present recent preliminary results from flights on the NASA Global Hawk in support of the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign, and on the NASA ER-2 as fixed nadir pointing mode for the NASA Global Precipitation Measurement (GPM) ground validation (GV) mission - Midlatitude Continental Convective Cloud Experiment (MC3E

    Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19

    Get PDF
    The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models

    The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    Get PDF
    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily

    Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    Get PDF
    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates

    NASA's Hurricane and Severe Storm Sentinel (HS3) Investigation

    Get PDF
    The National Aeronautics and Space Administrations (NASA) Hurricane and Severe Storm Sentinel (HS3) investigation was a multi-year field campaign designed to improve understanding of the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. Funded as part of NASAs Earth Venture program, HS3 conducted five-week campaigns during the hurricane seasons of 2012-14 using the NASA Global Hawk aircraft, along with a second Global Hawk in 2013 and a WB-57f aircraft in 2014. Flying from a base at Wallops Island, Virginia, the Global Hawk could be on station over storms for up to 18 hours off the East Coast of the U.S. to about 6 hours off the western coast of Africa. Over the three years, HS3 flew 21 missions over 9 named storms, along with flights over two non-developing systems and several Saharan Air Layer (SAL) outbreaks. This article summarizes the HS3 experiment, the missions flown, and some preliminary findings related to the rapid intensification and outflow structure of Hurricane Edouard (2014) and the interaction of Hurricane Nadine (2012) with the SAL

    The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    Get PDF
    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of cool-season light precipitation by leveraging existing infrastructure in the Helsinki Precipitation Testbed. LPVEx was conducted during the months of September--October, 2010 and featured coordinated ground and airborne remote sensing components designed to observe and quantify the precipitation physics associated with light rain in low-altitude melting layer environments over the Gulf of Finland and neighboring land mass surrounding Helsinki, Finland
    • …
    corecore