49,392 research outputs found

    Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations

    Get PDF
    We construct a new framework for accelerating Markov chain Monte Carlo in posterior sampling problems where standard methods are limited by the computational cost of the likelihood, or of numerical models embedded therein. Our approach introduces local approximations of these models into the Metropolis-Hastings kernel, borrowing ideas from deterministic approximation theory, optimization, and experimental design. Previous efforts at integrating approximate models into inference typically sacrifice either the sampler's exactness or efficiency; our work seeks to address these limitations by exploiting useful convergence characteristics of local approximations. We prove the ergodicity of our approximate Markov chain, showing that it samples asymptotically from the \emph{exact} posterior distribution of interest. We describe variations of the algorithm that employ either local polynomial approximations or local Gaussian process regressors. Our theoretical results reinforce the key observation underlying this paper: when the likelihood has some \emph{local} regularity, the number of model evaluations per MCMC step can be greatly reduced without biasing the Monte Carlo average. Numerical experiments demonstrate multiple order-of-magnitude reductions in the number of forward model evaluations used in representative ODE and PDE inference problems, with both synthetic and real data.Comment: A major update of the theory and example

    Random Finite Set Theory and Optimal Control of Large Collaborative Swarms

    Full text link
    Controlling large swarms of robotic agents has many challenges including, but not limited to, computational complexity due to the number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty in the swarm's configuration. This work generalizes the swarm state using Random Finite Set (RFS) theory and solves the control problem using Model Predictive Control (MPC) to overcome the aforementioned challenges. Computationally efficient solutions are obtained via the Iterative Linear Quadratic Regulator (ILQR). Information divergence is used to define the distance between the swarm RFS and the desired swarm configuration. Then, a stochastic optimal control problem is formulated using a modified L2^2 distance. Simulation results using MPC and ILQR show that swarm intensities converge to a target destination, and the RFS control formulation can vary in the number of target destinations. ILQR also provides a more computationally efficient solution to the RFS swarm problem when compared to the MPC solution. Lastly, the RFS control solution is applied to a spacecraft relative motion problem showing the viability for this real-world scenario.Comment: arXiv admin note: text overlap with arXiv:1801.0731

    Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

    No full text
    © 2007 EUCA.A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means of a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller

    Regret Minimization in Partially Observable Linear Quadratic Control

    Get PDF
    We study the problem of regret minimization in partially observable linear quadratic control systems when the model dynamics are unknown a priori. We propose ExpCommit, an explore-then-commit algorithm that learns the model Markov parameters and then follows the principle of optimism in the face of uncertainty to design a controller. We propose a novel way to decompose the regret and provide an end-to-end sublinear regret upper bound for partially observable linear quadratic control. Finally, we provide stability guarantees and establish a regret upper bound of O(T^(2/3)) for ExpCommit, where T is the time horizon of the problem
    corecore