496 research outputs found

    Combining loan requests and investment offers

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Use of Metaheuristic Algorithms in Malware Detection

    Get PDF
    Metaheuristic algorithms are the general framework for optimization problems. They are not problem dependent and are heavily deployed in different domains. Due to rise in number of malware, malware detection techniques are updated very often. In the present work different metaheuritics algorithm used in malware detection and are available in the literature are discussed. Metaheuristics algorithm like harmony search, clonal selection, genetic algorithm and Negative selection algorithms are discussed

    A Multi-Objective Variable Neighborhood Search Algorithm for Precast Production Scheduling

    Get PDF
    In real life, precast production schedulers face the challenges of creating a reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and objectives encountered in the precast production scheduling problem (PPSP) were addressed, with the goal to minimize makespan and total earliness and tardiness penalties. A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the performance was tested on 11 problem instances. Ten of these were generated using precast concrete production information taken from the literature. One real industrial problem from a precast concrete company was considered as a case study. Extensive experiments were conducted, and the spread and distance metrics were used to evaluate the quality of the non-dominated solutions set. Statistical analysis demonstrated that the result was statistically convincing. Computational results showed that the proposed MOVNS algorithm was significantly better when compared to the other nine algorithms. Therefore, the proposed MOVNS algorithm was a very competitive method for the considered PPSP

    Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification

    Get PDF
    In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; ArgentinaFil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentin

    Exploration based Genetic Algorithm for Job Scheduling on Grid Computing

    Get PDF
    Grid computing presents a new trend to distribute and Internet computing to coordinate large scale heterogeneous resources providing sharing and problem solving in dynamic, multi- institutional virtual organizations. Scheduling is one of the most important problems in computational grid to increase the performance. Genetic Algorithm is adaptive method that can be used to solve optimization problems, based on the genetic process of biological organisms. The objective of this research is to develop a job scheduling algorithm using genetic algorithm with high exploration processes. To evaluate the proposed scheduling algorithm this study conducted a simulation using GridSim Simulator and a number of different workload. The research found that genetic algorithm get best results when increasing the mutation and these result directly proportional with the increase in the number of job. The paper concluded that, the mutation and exploration process has a good effect on the final execution time when we have large number of jobs. However, in small number of job mutation has no effects

    A Memetic Algorithm for the Multidimensional Assignment Problem

    Full text link
    The Multidimensional Assignment Problem (MAP or s-AP in the case of s dimensions) is an extension of the well-known assignment problem. The most studied case of MAP is 3-AP, though the problems with larger values of s have also a number of applications. In this paper we propose a memetic algorithm for MAP that is a combination of a genetic algorithm with a local search procedure. The main contribution of the paper is an idea of dynamically adjusted generation size, that yields an outstanding flexibility of the algorithm to perform well for both small and large fixed running times. The results of computational experiments for several instance families show that the proposed algorithm produces solutions of very high quality in a reasonable time and outperforms the state-of-the art 3-AP memetic algorithm.Comment: 14 page
    corecore