1,003 research outputs found

    The multiple pheromone ant clustering algorithm and its application to real world domains

    Get PDF
    The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models

    Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning

    Get PDF
    This research merges the hierarchical reinforcement learning (HRL) domain and the ant colony optimization (ACO) domain. The merger produces a HRL ACO algorithm capable of generating solutions for both domains. This research also provides two specific implementations of the new algorithm: the first a modification to Dietterich\u27s MAXQ-Q HRL algorithm, the second a hierarchical ACO algorithm. These implementations generate faster results, with little to no significant change in the quality of solutions for the tested problem domains. The application of ACO to the MAXQ-Q algorithm replaces the reinforcement learning, Q-learning and SARSA, with the modified ant colony optimization method, Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different from MAXQ-Q in 88% of the time. This research then transfers HRL techniques to the ACO domain and traveling salesman problem (TSP). To apply HRL to ACO, a hierarchy must be created for the TSP. A data clustering algorithm creates these subtasks, with an ACO algorithm to solve the individual and complete problems. This research tests two clustering algorithms, k-means and G-means. The results demonstrate the algorithm with data clustering produces solutions 85-95% faster but with 5-10% decrease in solution quality

    The multiple pheromone Ant clustering algorithm

    Get PDF
    Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches

    Big Data Analysis-Based Secure Cluster Management for Optimized Control Plane in Software-Defined Networks

    Get PDF
    In software-defined networks (SDNs), the abstracted control plane is its symbolic characteristic, whose core component is the software-based controller. The control plane is logically centralized, but the controllers can be physically distributed and composed of multiple nodes. To meet the service management requirements of large-scale network scenarios, the control plane is usually implemented in the form of distributed controller clusters. Cluster management technology monitors all types of events and must maintain a consistent global network status, which usually leads to big data in SDNs. Simultaneously, the cluster security is an open issue because of the programmable and dynamic features of SDNs. To address the above challenges, this paper proposes a big data analysis-based secure cluster management architecture for the optimized control plane. A security authentication scheme is proposed for cluster management. Moreover, we propose an ant colony optimization approach that enables big data analysis scheme and the implementation system that optimizes the control plane. Simulations and comparisons show the feasibility and efficiency of the proposed scheme. The proposed scheme is significant in improving the security and efficiency SDN control plane

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning

    Get PDF
    This paper merges hierarchical reinforcement learning (HRL) with ant colony optimization (ACO) to produce a HRL ACO algorithm capable of generating solutions for large domains. This paper describes two specific implementations of the new algorithm: the first a modification to Dietterich’s MAXQ-Q HRL algorithm, the second a hierarchical ant colony system algorithm. These implementations generate faster results, with little to no significant change in the quality of solutions for the tested problem domains. The application of ACO to the MAXQ-Q algorithm replaces the reinforcement learning, Q-learning, with the modified ant colony optimization method, Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different from MAXQ-Q in 88% of the time. This paper then transfers HRL techniques to the ACO domain and traveling salesman problem (TSP). To apply HRL to ACO, a hierarchy must be created for the TSP. A data clustering algorithm creates these subtasks, with an ACO algorithm to solve the individual and complete problems. This paper tests two clustering algorithms, k-means and G-means. The results demonstrate the algorithm with data clustering produces solutions 20 times faster with 5-10% decrease in solution quality due to the effects of clustering
    corecore