346,758 research outputs found

    Population Focused Nursing: Advocacy for Vulnerable Populations in an RN-BSN Program

    Get PDF
    The purpose of this article is to describe an innovative learning activity for online RN-BSN students designed to foster advocacy for vulnerable populations. The Vulnerable Population Advocacy Assignment, included as a component of the online Population-Focused Nursing class, provides students with the opportunity to identify and develop an awareness of issues impacting vulnerable populations and to advocate for policy changes that will influence the health of individuals, families, and populations. RN-BSN students build on previous knowledge and skills in professional communication and advocacy as they develop a policy statement designed to address health disparities impacting local, national, and global populations

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Formal change impact analyses for emulated control software

    Get PDF
    Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original systemā€™s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly

    Modeling Algorithms in SystemC and ACL2

    Full text link
    We describe the formal language MASC, based on a subset of SystemC and intended for modeling algorithms to be implemented in hardware. By means of a special-purpose parser, an algorithm coded in SystemC is converted to a MASC model for the purpose of documentation, which in turn is translated to ACL2 for formal verification. The parser also generates a SystemC variant that is suitable as input to a high-level synthesis tool. As an illustration of this methodology, we describe a proof of correctness of a simple 32-bit radix-4 multiplier.Comment: In Proceedings ACL2 2014, arXiv:1406.123
    • ā€¦
    corecore