10,386 research outputs found

    Long-Range Connections in Transportation Networks

    Full text link
    Since its recent introduction, the small-world effect has been identified in several important real-world systems. Frequently, it is a consequence of the existence of a few long-range connections, which dominate the original regular structure of the systems and implies each node to become accessible from other nodes after a small number of steps, typically of order logN\ell \propto \log N. However, this effect has been observed in pure-topological networks, where the nodes have no spatial coordinates. In this paper, we present an alalogue of small-world effect observed in real-world transportation networks, where the nodes are embeded in a hree-dimensional space. Using the multidimensional scaling method, we demonstrate how the addition of a few long-range connections can suubstantially reduce the travel time in transportation systems. Also, we investigated the importance of long-range connections when the systems are under an attack process. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highways network enhanced by some of the main US airlines routes

    Fine-Grained Reliability for V2V Communications around Suburban and Urban Intersections

    Full text link
    Safe transportation is a key use-case of the 5G/LTE Rel.15+ communications, where an end-to-end reliability of 0.99999 is expected for a vehicle-to-vehicle (V2V) transmission distance of 100-200 m. Since communications reliability is related to road-safety, it is crucial to verify the fulfillment of the performance, especially for accident-prone areas such as intersections. We derive closed-form expressions for the V2V transmission reliability near suburban corners and urban intersections over finite interference regions. The analysis is based on plausible street configurations, traffic scenarios, and empirically-supported channel propagation. We show the means by which the performance metric can serve as a preliminary design tool to meet a target reliability. We then apply meta distribution concepts to provide a careful dissection of V2V communications reliability. Contrary to existing work on infinite roads, when we consider finite road segments for practical deployment, fine-grained reliability per realization exhibits bimodal behavior. Either performance for a certain vehicular traffic scenario is very reliable or extremely unreliable, but nowhere in relatively proximity to the average performance. In other words, standard SINR-based average performance metrics are analytically accurate but can be insufficient from a practical viewpoint. Investigating other safety-critical point process networks at the meta distribution-level may reveal similar discrepancies.Comment: 27 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    corecore