27 research outputs found

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Forecasting monthly airline passenger numbers with small datasets using feature engineering and a modified principal component analysis

    Get PDF
    In this study, a machine learning approach based on time series models, different feature engineering, feature extraction, and feature derivation is proposed to improve air passenger forecasting. Different types of datasets were created to extract new features from the core data. An experiment was undertaken with artificial neural networks to test the performance of neurons in the hidden layer, to optimise the dimensions of all layers and to obtain an optimal choice of connection weights – thus the nonlinear optimisation problem could be solved directly. A method of tuning deep learning models using H2O (which is a feature-rich, open source machine learning platform known for its R and Spark integration and its ease of use) is also proposed, where the trained network model is built from samples of selected features from the dataset in order to ensure diversity of the samples and to improve training. A successful application of deep learning requires setting numerous parameters in order to achieve greater model accuracy. The number of hidden layers and the number of neurons, are key parameters in each layer of such a network. Hyper-parameter, grid search, and random hyper-parameter approaches aid in setting these important parameters. Moreover, a new ensemble strategy is suggested that shows potential to optimise parameter settings and hence save more computational resources throughout the tuning process of the models. The main objective, besides improving the performance metric, is to obtain a distribution on some hold-out datasets that resemble the original distribution of the training data. Particular attention is focused on creating a modified version of Principal Component Analysis (PCA) using a different correlation matrix – obtained by a different correlation coefficient based on kinetic energy to derive new features. The data were collected from several airline datasets to build a deep prediction model for forecasting airline passenger numbers. Preliminary experiments show that fine-tuning provides an efficient approach for tuning the ultimate number of hidden layers and the number of neurons in each layer when compared with the grid search method. Similarly, the results show that the modified version of PCA is more effective in data dimension reduction, classes reparability, and classification accuracy than using traditional PCA.</div

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    Differential geometric aspects of parametric estimation theory for states on finite-dimensional C*-algebras

    Get PDF
    A geometrical formulation of estimation theory for finite-dimensional C⋆C^{\star}-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.Comment: 33 pages. Minor improvements. References added. Comments are welcome
    corecore