27 research outputs found

    Bayesian algorithms for mobile terminal positioning in outdoor wireless environments

    Get PDF
    [no abstract

    Differential geometric aspects of parametric estimation theory for states on finite-dimensional C*-algebras

    Get PDF
    A geometrical formulation of estimation theory for finite-dimensional C⋆C^{\star}-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.Comment: 33 pages. Minor improvements. References added. Comments are welcome

    Conditional covariance estimation for dimension reduction and sensivity analysis

    Get PDF
    Cette thèse se concentre autour du problème de l'estimation de matrices de covariance conditionnelles et ses applications, en particulier sur la réduction de dimension et l'analyse de sensibilités. Dans le Chapitre 2 nous plaçons dans un modèle d'observation de type régression en grande dimension pour lequel nous souhaitons utiliser une méthodologie de type régression inverse par tranches. L'utilisation d'un opérateur fonctionnel, nous permettra d'appliquer une décomposition de Taylor autour d'un estimateur préliminaire de la densité jointe. Nous prouverons deux choses : notre estimateur est asymptoticalement normale avec une variance que dépend de la partie linéaire, et cette variance est efficace selon le point de vue de Cramér-Rao. Dans le Chapitre 3, nous étudions l'estimation de matrices de covariance conditionnelle dans un premier temps coordonnée par coordonnée, lesquelles dépendent de la densité jointe inconnue que nous remplacerons par un estimateur à noyaux. Nous trouverons que l'erreur quadratique moyenne de l'estimateur converge à une vitesse paramétrique si la distribution jointe appartient à une classe de fonctions lisses. Sinon, nous aurons une vitesse plus lent en fonction de la régularité de la densité de la densité jointe. Pour l'estimateur de la matrice complète, nous allons appliquer une transformation de régularisation de type "banding". Finalement, dans le Chapitre 4, nous allons utiliser nos résultats pour estimer des indices de Sobol utilisés en analyses de sensibilité. Ces indices mesurent l'influence des entrées par rapport a la sortie dans modèles complexes. L'avantage de notre implémentation est d'estimer les indices de Sobol sans l'utilisation de coûteuses méthodes de type Monte-Carlo. Certaines illustrations sont présentées dans le chapitre pour montrer les capacités de notre estimateur.This thesis will be focused in the estimation of conditional covariance matrices and their applications, in particular, in dimension reduction and sensitivity analyses. In Chapter 2, we are in a context of high-dimensional nonlinear regression. The main objective is to use the sliced inverse regression methodology. Using a functional operator depending on the joint density, we apply a Taylor decomposition around a preliminary estimator. We will prove two things: our estimator is asymptotical normal with variance depending only the linear part, and this variance is efficient from the Cramér-Rao point of view. In the Chapter 3, we study the estimation of conditional covariance matrices, first coordinate-wise where those parameters depend on the unknown joint density which we will replace it by a kernel estimator. We prove that the mean squared error of the nonparametric estimator has a parametric rate of convergence if the joint distribution belongs to some class of smooth functions. Otherwise, we get a slower rate depending on the regularity of the model. For the estimator of the whole matrix estimator, we will apply a regularization of type "banding". Finally, in Chapter 4, we apply our results to estimate the Sobol or sensitivity indices. These indices measure the influence of the inputs with respect to the output in complex models. The advantage of our implementation is that we can estimate the Sobol indices without use computing expensive Monte-Carlo methods. Some illustrations are presented in the chapter showing the capabilities of our estimator

    Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring — A Sparse and Nonlinear Tour

    Get PDF
    The topic of this thesis is very high resolution (VHR) tomographic SAR inversion for urban infrastructure monitoring. To this end, SAR tomography and differential SAR tomography are demonstrated using TerraSAR-X spotlight data for providing 3-D and 4-D (spatial-temporal) maps of an entire high rise city area including layover separation and estimation of deformation of the buildings. A compressive sensing based estimator (SL1MMER) tailored to VHR SAR data is developed for tomographic SAR inversion by exploiting the sparsity of the signal. A systematic performance assessment of the algorithm is performed regarding elevation estimation accuracy, super-resolution and robustness. A generalized time warp method is proposed which enables differential SAR tomography to estimate multi-component nonlinear motion. All developed methods are validated with both simulated and extensive processing of large volumes of real data from TerraSAR-X

    Quantum Metrology of Grid Deformations and Squeezed Light: With applications in quantum imaging & quantum information

    Get PDF
    In this thesis we make progress towards applications of quantum estimation theory to new physical systems. We first consider two commonly visited problems in quantum metrology: source optimisation and source localisation. For the first, we focus on estimating the distances, d, between neighbouring light sources along an array, which undergoes stretching deformations. We evaluate how changing the nature of the sources impacts the estimation precision of d by using the quantum Fisher information (QFI) as a figure of merit. By comparing this quantity for arrays of single photon emitters, coherent, thermal, and entangled sources, we find that the classical coherent and thermal states outperform the single photon emitters. This would be favourable since generating classical states is less resource-expensive to create. However, a quantum enhancement is observed when entanglement is employed. In agreement with separate work, the optimal state is that which entangles the eigenstates corresponding to the maximum and minimum difference eigenvalues of the generator. We demonstrate that not all entangled states can reproduce similar precision enhancements. This insight is reminiscent of previous studies, where entanglement was concluded as a necessary but insufficient resource for quantum metrology. Next, we address the source localisation problem to detect any deformations applied to a grid of sources. Improving this detection depends on our ability to engineer grids that maximise the sensitivity of the QFI matrix. Hence, we derive the generators of local translations of unitary evolutions that describe any general grid deformation, and show that our result is a multi-parameter extension of other results in the literature. We obtain a general result for the quantum Fisher information matrix (QFIM) through these generators for any grid deformation and explore specific spatial maps, including composite stretches, shears, and rotations. Since the QFI matrix depends only on the properties of the probe state and the configuration of the emitters, we explore how we can modify both to enhance our estimation sensitivity to determine the applied grid deformation. Physically motivated, we find the best arrangement of sources that enhances the sensitivity of detection for a set number of sources. Finally, we consider the optimal estimation of a complex squeezing operation in phase space. The use of squeezed light as a quantum resource is ubiquitous in quantum optics, and a complete characterisation of a complex squeezing operation is pivotal for fundamental reasons. This is a true multi-parameter quantum estimation problem of incompatible observables. Specifically, we find that the symmetric logarithmic derivates (SLDs) for amplitude and directional squeezing do not commute. This prohibits simultaneous optimal estimates of both parameters, even in the asymptotic limit. As a result, we focus on finding separable optimal estimates. The Cramér-Rao bound is determined to provide a theoretical benchmark on the bi-variate estimation precision for general single mode Gaussian probes. Using this and the SLDs, we present a practical experimental implementation that can realise the individual fundamental precision bounds

    Efficient Estimating Functions for Stochastic Differential Equations

    Get PDF
    corecore