731 research outputs found

    The Multicast Policy and Its Relationship to Replicated Data Placement

    Get PDF
    In this paper we consider the communication complexity of maintaining the replicas of a logical data-item, in a database distributed over a computer network. We propose a new method, called the minimum spanning tree write, by which a processor in the network should multicast a write of a logical data-item, to all the processors that store replicas of the item. Then we show that the minimum spanning tree write is optimal from the communication cost point of view. We also demonstrate that the method by which a write is multicast to all the replicas of a data-item, affects the optimal replication scheme of the item, i.e., at which processors in the network the replicas should be located. Therefore, next we consider the problem of determining an optimal replication scheme for a data item, assuming that each processor employs the minimum spanning tree write at run-time. The problem for general networks is shown NP-Complete, but we provide efficient algorithms to obtain an optimal allocation scheme for three common types of network topologies. They are completely-connected, tree, and ring networks. For these topologies, efficient algorithms are also provided for the case in which reliability considerations dictate a minimum number of replicas

    Scalable download protocols

    Get PDF
    Scalable on-demand content delivery systems, designed to effectively handle increasing request rates, typically use service aggregation or content replication techniques. Service aggregation relies on one-to-many communication techniques, such as multicast, to efficiently deliver content from a single sender to multiple receivers. With replication, multiple geographically distributed replicas of the service or content share the load of processing client requests and enable delivery from a nearby server.Previous scalable protocols for downloading large, popular files from a single server include batching and cyclic multicast. Analytic lower bounds developed in this thesis show that neither of these protocols consistently yields performance close to optimal. New hybrid protocols are proposed that achieve within 20% of the optimal delay in homogeneous systems, as well as within 25% of the optimal maximum client delay in all heterogeneous scenarios considered.In systems utilizing both service aggregation and replication, well-designed policies determining which replica serves each request must balance the objectives of achieving high locality of service, and high efficiency of service aggregation. By comparing classes of policies, using both analysis and simulations, this thesis shows that there are significant performance advantages in using current system state information (rather than only proximities and average loads) and in deferring selection decisions when possible. Most of these performance gains can be achieved using only “local” (rather than global) request information.Finally, this thesis proposes adaptations of already proposed peer-assisted download techniques to support a streaming (rather than download) service, enabling playback to begin well before the entire media file is received. These protocols split each file into pieces, which can be downloaded from multiple sources, including other clients downloading the same file. Using simulations, a candidate protocol is presented and evaluated. The protocol includes both a piece selection technique that effectively mediates the conflict between achieving high piece diversity and the in-order requirements of media file playback, as well as a simple on-line rule for deciding when playback can safely commence

    Virtual network function placement and routing for multicast service chaining using merged paths

    Get PDF
    This paper proposes a virtual network function placement and routing model for multicast service chaining based on merging multiple service paths (MSC-M). The multicast service chaining (MSC) is used for providing a network-virtualization based multicast service. The MSC sets up a multicast path, which connects a source node and multiple destination nodes. Virtual network functions (VNFs) are placed on the path so that users on the destination nodes receive their desired services. The conventional MSC model configures multicast paths for services, each of which has the same source data and the same set of VNFs in a predefined order. In the MSC-M model, if paths of different services carry the same data on the same link, these paths are allowed to be merged into one path at that link, which improves the utilization of network resources. The MSC-M model determines the placement of VNFs and the route of paths so that the total cost associated with VNF placement and link usage is minimized. The MSC-M model is formulated as an integer linear programming (ILP) Problem. We prove that the decision version of VNF placement and routing problem based on the MSC-M model is NP-complete. A heuristic algorithm is introduced for the case that the ILP problem is intractable. Numerical results show that the MSC-M model reduces the total cost required to accommodate service chaining requests compared to the conventional MSC model. We discuss directions for extending the MSC-M model to an optical domain

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Fabric-on-a-Chip: Toward Consolidating Packet Switching Functions on Silicon

    Get PDF
    The switching capacity of an Internet router is often dictated by the memory bandwidth required to bu¤er arriving packets. With the demand for greater capacity and improved service provisioning, inherent memory bandwidth limitations are encountered rendering input queued (IQ) switches and combined input and output queued (CIOQ) architectures more practical. Output-queued (OQ) switches, on the other hand, offer several highly desirable performance characteristics, including minimal average packet delay, controllable Quality of Service (QoS) provisioning and work-conservation under any admissible traffic conditions. However, the memory bandwidth requirements of such systems is O(NR), where N denotes the number of ports and R the data rate of each port. Clearly, for high port densities and data rates, this constraint dramatically limits the scalability of the switch. In an effort to retain the desirable attributes of output-queued switches, while significantly reducing the memory bandwidth requirements, distributed shared memory architectures, such as the parallel shared memory (PSM) switch/router, have recently received much attention. The principle advantage of the PSM architecture is derived from the use of slow-running memory units operating in parallel to distribute the memory bandwidth requirement. At the core of the PSM architecture is a memory management algorithm that determines, for each arriving packet, the memory unit in which it will be placed. However, to date, the computational complexity of this algorithm is O(N), thereby limiting the scalability of PSM switches. In an effort to overcome the scalability limitations, it is the goal of this dissertation to extend existing shared-memory architecture results while introducing the notion of Fabric on a Chip (FoC). In taking advantage of recent advancements in integrated circuit technologies, FoC aims to facilitate the consolidation of as many packet switching functions as possible on a single chip. Accordingly, this dissertation introduces a novel pipelined memory management algorithm, which plays a key role in the context of on-chip output- queued switch emulation. We discuss in detail the fundamental properties of the proposed scheme, along with hardware-based implementation results that illustrate its scalability and performance attributes. To complement the main effort and further support the notion of FoC, we provide performance analysis of output queued cell switches with heterogeneous traffic. The result is a flexible tool for obtaining bounds on the memory requirements in output queued switches under a wide range of tra¢ c scenarios. Additionally, we present a reconfigurable high-speed hardware architecture for real-time generation of packets for the various traffic scenarios. The work presented in this thesis aims at providing pragmatic foundations for designing next-generation, high-performance Internet switches and routers

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog
    • …
    corecore