27 research outputs found

    Policy aware QoS inter-domain multicast

    Get PDF
    Future Internet applications are expected to have higher QoS requirements. Therefore, routing protocols must be adapted to find a path which satisfies such requirements. Most multicast applications are QoS sensitive in nature, because they involve the transmission of real-time multimedia data streams. There are several research projects aiming to extend existing multicast routing protocols with QoS capabilities, or even proposing new QoS aware ones. However key requirements for inter-domain routing like scalability, intra-domain independence, and policy awareness are missing in most of existing multicast routing protocols. In this paper, it is proposed an inter-domain multicast routing strategy that builds inter-domain unidirectional multicast distribution trees, taking into account multicast specific routing policies, and supporting QoS requirements

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Secure and Distributed Multicast Address Allocation on IPv6 Networks

    Get PDF
    Address allocation has been a limiting factor in the deployment of multicast solutions, and, as other multicast technologies advance, a general solution to this problem becomes more urgent. This study examines the current state of address allocation and finds impediments in many of the proposed solutions. A number of the weaknesses can be traced back to the rapidly ageing Internet Protocol version 4, and therefore it was decided that a new approach is required. A central part of this work relies on the newer Internet Protocol version 6, specifically the Unicast prefix based multicast address format. The primary aim of this study was to develop an architecture for secure distributed IPv6 multicast address allocation. The architecture should be usable by client applications to retrieve addresses which are globally unique. The product of this work was the Distributed Allocation Of Multicast Addresses Protocol, or DAOMAP. It is a system whichcan be deployed on nodes which wish to take part in multicast address allocation and an implementation was developed. Analysis and simulations determined that the devised model fitted the stated requirements, and security testing determinedthat DAOMAP was safe from a series of attacks.Dissertation (MSc (Computer Science))--University of Pretoria, 2006.Computer Scienceunrestricte

    Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique

    Get PDF
    Mobile IPv6 (MIPv6) describes how a mobile node can change its point of attachment to the Internet. While MIPv6 focuses on unicast communications, it also proposes two basic mechanisms, known as bi-directional tunnelling and remote subscription, to handle multicast communications with mobile members. In the mean time, the deployment of Source-Specific Multicast (SSM) is of great interest, using the Protocol Independent Multicast-Sparse Mode (PIM-SM) and Multicast Listener Discovery (MLDv2) protocols. In the particular case of mobile IPv6 SSM sources, the mechanism proposed in MIPv6 to support multicast communications introduced a number of problems that need to be addressed. First, in most scenarios the MIPv6 solution leads to suboptimal routing by setting up a tunnel to forward packets between the home agent in its home network and the current location in the foreign network. The use of a third party when roaming which is the home agent leads to suboptimal routing. Second, it introduces a central point of failure (i.e. the Home Agent (HA)) that is not to be neglected. The proposed MIPv6 solution also induces a great traffic concentration around this central point. Third, the processing task of the central point increases with the number of mobile sources it serves, thus reducing the efficiency of multicast delivery. The objective of this thesis is to remove some of the obstacles encountered in the way of multicast deployment in the Internet, thereby making Mobile IPv6 better equipped to support mobile SSM sources. Recent proposals to provide multicasting over mobile IP focuses mainly on recipient mobility but little attention has been given to the case of source mobility. This thesis attempts to address this problem. The basic essence of the problem is that while the effect of receiver movement on the multicast tree is local, the effect of source movement may be global and it may affect the complete multicast delivery tree. The initial design was motivated by the need to support one-to-many and many-to-many applications in a scalable fashion. Such applications cannot be serviced efficiently with unicast delivery. As the overall problem statement of “Scalability Improvement of Multicast Source Movement over IPv6 Using Clustering Technique” is extremely complex, we divide the problem into the following components: build the multicast delivery tree for source specific multicast which is a routing issue; clustering receivers based on their IPv6 addresses; improve the state scalability of these clusters which is a deployment issue; find an efficient way for service distribution which is a deployment issue as well; and finally, the seamless integration of the work with Mobile IPv6 allowing it to support multicast efficiently for mobile nodes. The combined solution provides a comprehensive procedure for planning and managing a multicast-based IPv6 network. The outcome of this thesis are: a software to represent an architecture of a multicast delivery tree for one-to-many type of group communication, a group management scheme that could handle the end nodes subscription/un-subscription process with the required updates, an average subscription delay of between 0.255 ms-0.530 ms and un-subscription delay of between 0.0456 ms-0.087 ms for up to 50000 nodes, an approach to multicast forwarding state reduction that could support small-size groups as well as large-size groups, and finally the integration of the work with Mobile IPv6 to handle the multicast source movement

    Uma arquitetura para tráfegos "multicast" no modelo de serviços diferenciados

    Get PDF
    This paper describes a new kind of architecture to use multicast with a high quality of services through the Internet. This architecture can be useful in projects where multimedia interactive applications, like video/audio teleconferences, and retrieving multimedia documents, are used. Resources reservations will be allocated by a bandwidth allocator server/agent to perform the proposed multicast traffic. This work is based on ideas adapted from many Internet-drafts. Of course, this is not a concluded work, since some implementing details require further studies.Este artigo descreve uma arquitetura para a implementação do tráfego "multicast" com qualidade de serviço na Internet. Esta arquitetura baseia-se na reserva de recursos de rede através de servidores e agentes alocadores de largura de banda no Modelo de Serviços Diferenciados. O ambiente proposto é útil em projetos onde há o uso intensivo de aplicações multimídia interativas, como teleconferência de vídeo/áudio, e a recuperação de documentos multimídia. Este trabalho baseia-se em propostas encontradas em diversos "Internet-drafts" referentes aos Modelos de Serviços Integrados e Diferenciados. Naturalmente, este não é um trabalho finalizado, visto que alguns aspectos de sua implementação requerem estudos adicionais

    Multicast for ubiquitos streaming of multimedia content to mobile terminals : Network architecture and protocols

    Get PDF
    The Universal Mobile Telecommunication Services (UMTS) network was envisioned to carry a wide range of new services; however, the first UMTS release was not designed to efficiently support multimedia content. In this thesis we analyse several mechanisms, and suggest architectural changes to improve UMTS’s capacity for a subset of the multimedia services; high-bandwidth group services. In our initial work we have suggested how IP multicast protocols can be used in the UMTS network to reduce the required network capacity for group services. This proposal was one of many suggestions for the evolving Multimedia Broadcast/Multicast Service (MBMS) architecture for UMTS. The next technique we have suggested and analysed is a new wireless channel type named the "sticky-channel"; this channel is intended for sparsely populated multicast groups. The sticky-channel is able to stick to mobile multicast members in the boarder area of neighbouring radio cells, thus some base stations does not need to broadcast the multicast data. Consequently, the total number of broadcast channels needed to cover a given area is reduced. There is a marginal reduction of required resources with this technique. In the main part of our work we have studied heterogeneous multihop wireless access for multicast traffic in the UMTS network. In a heterogeneous wireless access network, the wireless resources needed to distribute high-bandwidth group services, can be shared among cooperating network technologies. Mobile terminals with a UMTS interface and an IEEE 802.11 interface are readily available, consequently a heterogeneous network with UMTS and 802.11 links will be easy to deploy. We have described a heterogeneous architecture based on those wireless technologies. In this architecture, the range of a UMTS radio channel is reduced, and local IEEE 802.11-based Mobile Ad Hoc Networks (MANETs) forward the data to users located outside the coverage of the reduced UMTS channel. The wireless resources required to transmit a data packet are proportional to (at least) the square of the distance the packet must travel, thus a reduction in the channel range releases a significant amount of UMTS radio resources. Detailed simulation results showed acceptable service quality when the UMTS broadcast channel range is more than halved. Finally we have studied whether Forward Error Correction (FEC) at the packet-level on multicast flows could improve the performance of the heterogeneous wireless access network. There is a marginal improvement. Most of the protection brought by the FEC code has been used to repair the increased packet-loss introduced by the FEC overhead

    Estudio de los mensajes de control del protocolo multicast PIM SM

    Get PDF
    OPNET es una herramienta de simulación de redes muy potente, donde se puede configurar cualquier tipo de red existente. Esta herramienta nos ayuda a "probar" sin tener que montar ninguna red física, una gran ventaja sobre todo para protocolos experimentales o para el diseño de los mismos. En este proyecto se utiliza el OPNET para explotar el protocolo multicast PIM-SM. Se establecerá un modelo de red, donde estarán configurados los nodos de forma estratégica para intentar extraer el máximo de información del comportamiento en esta situación del protocolo PIM-SM.OPNET és una eina de simulació de xarxes molt potent, on es pot configurar qualsevol tipus de xarxa existent. Aquesta eina ens ajudarà a "provar" sense haver de muntar cap xarxa física, un gran avantatge sobretot per protocols experimentals o pel disseny d'aquests. En aquest projecte s'utilitza l'OPNET per explotar el protocol multicast PIM-SM. S'establirà un model de xarxa, on estaran configurats els nodes de forma estratègica per intentar extreure el màxim d'informació del comportament en aquesta situació del protocol PIM-SM

    Routing in Large Scale tactical mobile ad hoc Networks

    Get PDF
    The current Transformation of the military networks adopts the MANET as a main component of the tactical domain. Indeed, a MANET is the right solution to enable highly mobile, highly reactive and quickly deployable tactical networks. Many applications such as the Situational Awareness rely on group communications, underlying the need for a multicast service within the tactical environment where the MANET is employed as a transit network. The purpose of this thesis is to study the setting up of an optimal multicast service within this tactical environment. We firstly focus on defining the protocol architecture to carry out within the tactical network paying particular attention to the MANET. This network is interconnected with different types of networks based on IP technologies and implementing potentially heterogeneous multicast protocols. The tactical MANET is supposed to be made of several hundred of mobile nodes, which implies that the scalability is crucial in the multicast protocol architecture choice. Since the concept of clustering proposes interesting scalability features, we consider that the MANET is a clustered network. Thereby, we define two multicast routing protocols adapted to the MANET: firstly STAMP that is in charge of the multicast communications within each cluster and secondly SAFIR that handles multicast flows between the clusters. These two protocols that can be implemented independently, act in concert to provide an efficient and scalable multicast service for the tactical MANET. Then, we study the interoperability of these multicast protocols employed within the MANET with those employed in the heterogeneous networks that it is interconnected with in order to guarantee end-to-end seamless multicast services to users. Finally, since the multicast protocols proposed in this thesis rely on underlying unicast routing protocols, we propose, in the last chapter, a scalable unicast routing protocol based on OLS

    Scalable download protocols

    Get PDF
    Scalable on-demand content delivery systems, designed to effectively handle increasing request rates, typically use service aggregation or content replication techniques. Service aggregation relies on one-to-many communication techniques, such as multicast, to efficiently deliver content from a single sender to multiple receivers. With replication, multiple geographically distributed replicas of the service or content share the load of processing client requests and enable delivery from a nearby server.Previous scalable protocols for downloading large, popular files from a single server include batching and cyclic multicast. Analytic lower bounds developed in this thesis show that neither of these protocols consistently yields performance close to optimal. New hybrid protocols are proposed that achieve within 20% of the optimal delay in homogeneous systems, as well as within 25% of the optimal maximum client delay in all heterogeneous scenarios considered.In systems utilizing both service aggregation and replication, well-designed policies determining which replica serves each request must balance the objectives of achieving high locality of service, and high efficiency of service aggregation. By comparing classes of policies, using both analysis and simulations, this thesis shows that there are significant performance advantages in using current system state information (rather than only proximities and average loads) and in deferring selection decisions when possible. Most of these performance gains can be achieved using only “local” (rather than global) request information.Finally, this thesis proposes adaptations of already proposed peer-assisted download techniques to support a streaming (rather than download) service, enabling playback to begin well before the entire media file is received. These protocols split each file into pieces, which can be downloaded from multiple sources, including other clients downloading the same file. Using simulations, a candidate protocol is presented and evaluated. The protocol includes both a piece selection technique that effectively mediates the conflict between achieving high piece diversity and the in-order requirements of media file playback, as well as a simple on-line rule for deciding when playback can safely commence

    Esquema de controlo para redes multicast baseadas com classes

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaThe expectations of citizens from the Information Technologies (ITs) are increasing as the ITs have become integral part of our society, serving all kinds of activities whether professional, leisure, safety-critical applications or business. Hence, the limitations of the traditional network designs to provide innovative and enhanced services and applications motivated a consensus to integrate all services over packet switching infrastructures, using the Internet Protocol, so as to leverage flexible control and economical benefits in the Next Generation Networks (NGNs). However, the Internet is not capable of treating services differently while each service has its own requirements (e.g., Quality of Service - QoS). Therefore, the need for more evolved forms of communications has driven to radical changes of architectural and layering designs which demand appropriate solutions for service admission and network resources control. This Thesis addresses QoS and network control issues, aiming to improve overall control performance in current and future networks which classify services into classes. The Thesis is divided into three parts. In the first part, we propose two resource over-reservation algorithms, a Class-based bandwidth Over-Reservation (COR) and an Enhanced COR (ECOR). The over-reservation means reserving more bandwidth than a Class of Service (CoS) needs, so the QoS reservation signalling rate is reduced. COR and ECOR allow for dynamically defining over-reservation parameters for CoSs based on network interfaces resource conditions; they aim to reduce QoS signalling and related overhead without incurring CoS starvation or waste of bandwidth. ECOR differs from COR by allowing for optimizing control overhead minimization. Further, we propose a centralized control mechanism called Advanced Centralization Architecture (ACA), that uses a single state-full Control Decision Point (CDP) which maintains a good view of its underlying network topology and the related links resource statistics on real-time basis to control the overall network. It is very important to mention that, in this Thesis, we use multicast trees as the basis for session transport, not only for group communication purposes, but mainly to pin packets of a session mapped to a tree to follow the desired tree. Our simulation results prove a drastic reduction of QoS control signalling and the related overhead without QoS violation or waste of resources. Besides, we provide a generic-purpose analytical model to assess the impact of various parameters (e.g., link capacity, session dynamics, etc.) that generally challenge resource overprovisioning control. In the second part of this Thesis, we propose a decentralization control mechanism called Advanced Class-based resource OverpRovisioning (ACOR), that aims to achieve better scalability than the ACA approach. ACOR enables multiple CDPs, distributed at network edge, to cooperate and exchange appropriate control data (e.g., trees and bandwidth usage information) such that each CDP is able to maintain a good knowledge of the network topology and the related links resource statistics on real-time basis. From scalability perspective, ACOR cooperation is selective, meaning that control information is exchanged dynamically among only the CDPs which are concerned (correlated). Moreover, the synchronization is carried out through our proposed concept of Virtual Over-Provisioned Resource (VOPR), which is a share of over-reservations of each interface to each tree that uses the interface. Thus, each CDP can process several session requests over a tree without requiring synchronization between the correlated CDPs as long as the VOPR of the tree is not exhausted. Analytical and simulation results demonstrate that aggregate over-reservation control in decentralized scenarios keep low signalling without QoS violations or waste of resources. We also introduced a control signalling protocol called ACOR Protocol (ACOR-P) to support the centralization and decentralization designs in this Thesis. Further, we propose an Extended ACOR (E-ACOR) which aggregates the VOPR of all trees that originate at the same CDP, and more session requests can be processed without synchronization when compared with ACOR. In addition, E-ACOR introduces a mechanism to efficiently track network congestion information to prevent unnecessary synchronization during congestion time when VOPRs would exhaust upon every session request. The performance evaluation through analytical and simulation results proves the superiority of E-ACOR in minimizing overall control signalling overhead while keeping all advantages of ACOR, that is, without incurring QoS violations or waste of resources. The last part of this Thesis includes the Survivable ACOR (SACOR) proposal to support stable operations of the QoS and network control mechanisms in case of failures and recoveries (e.g., of links and nodes). The performance results show flexible survivability characterized by fast convergence time and differentiation of traffic re-routing under efficient resource utilization i.e. without wasting bandwidth. In summary, the QoS and architectural control mechanisms proposed in this Thesis provide efficient and scalable support for network control key sub-systems (e.g., QoS and resource control, traffic engineering, multicasting, etc.), and thus allow for optimizing network overall control performance.À medida que as Tecnologias de Informação (TIs) se tornaram parte integrante da nossa sociedade, a expectativa dos cidadãos relativamente ao uso desses serviços também demonstrou um aumento, seja no âmbito das atividades profissionais, de lazer, aplicações de segurança crítica ou negócios. Portanto, as limitações dos projetos de rede tradicionais quanto ao fornecimento de serviços inovadores e aplicações avançadas motivaram um consenso quanto à integração de todos os serviços e infra-estruturas de comutação de pacotes, utilizando o IP, de modo a extrair benefícios económicos e um controlo mais flexível nas Redes de Nova Geração (RNG). Entretanto, tendo em vista que a Internet não apresenta capacidade de diferenciação de serviços, e sabendo que cada serviço apresenta as suas necessidades próprias, como por exemplo, a Qualidade de Serviço - QoS, a necessidade de formas mais evoluídas de comunicação tem-se tornado cada vez mais visível, levando a mudanças radicais na arquitectura das redes, que exigem soluções adequadas para a admissão de serviços e controlo de recursos de rede. Sendo assim, este trabalho aborda questões de controlo de QoS e rede com o objetivo de melhorar o desempenho do controlo de recursos total em redes atuais e futuras, através da análise dos serviços de acordo com as suas classes de serviço. Esta Tese encontra-se dividida em três partes. Na primeira parte são propostos dois algoritmos de sobre-reserva, o Class-based bandwidth Over-Reservation (COR) e uma extensão melhorada do COR denominado de Enhanced COR (ECOR). A sobre-reserva significa a reserva de uma largura de banda maior para o serviço em questão do que uma classe de serviço (CoS) necessita e, portanto, a quantidade de sinalização para reserva de recursos é reduzida. COR e ECOR consideram uma definição dinâmica de sobre-reserva de parâmetros para CoSs com base nas condições da rede, com vista à redução da sobrecarga de sinalização em QoS sem que ocorra desperdício de largura de banda. O ECOR, por sua vez, difere do COR por permitir a otimização com minimização de controlo de overhead. Além disso, nesta Tese é proposto também um mecanismo de controlo centralizado chamado Advanced Centralization Architecture (ACA) , usando um único Ponto de Controlo de Decisão (CDP) que mantém uma visão ampla da topologia de rede e de análise dos recursos ocupados em tempo real como base de controlo para a rede global. Nesta Tese são utilizadas árvores multicast como base para o transporte de sessão, não só para fins de comunicação em grupo, mas principalmente para que os pacotes que pertençam a uma sessão que é mapeada numa determinada árvore sigam o seu caminho. Os resultados obtidos nas simulações dos mecanismos mostram uma redução significativa da sobrecarga da sinalização de controlo, sem a violação dos requisitos de QoS ou desperdício de recursos. Além disso, foi proposto um modelo analítico no sentido de avaliar o impacto provocado por diversos parâmetros (como por exemplo, a capacidade da ligação, a dinâmica das sessões, etc), no sobre-provisionamento dos recursos. Na segunda parte desta tese propôe-se um mecanismo para controlo descentralizado de recursos denominado de Advanced Class-based resource OverprRovisioning (ACOR), que permite obter uma melhor escalabilidade do que o obtido pelo ACA. O ACOR permite que os pontos de decisão e controlo da rede, os CDPs, sejam distribuídos na periferia da rede, cooperem entre si, através da troca de dados e controlo adequados (por exemplo, localização das árvores e informações sobre o uso da largura de banda), de tal forma que cada CDP seja capaz de manter um bom conhecimento da topologia da rede, bem como das suas ligações. Do ponto de vista de escalabilidade, a cooperação do ACOR é seletiva, o que significa que as informações de controlo são trocadas de forma dinâmica apenas entre os CDPs analisados. Além disso, a sincronização é feita através do conceito proposto de Recursos Virtuais Sobre-Provisionado (VOPR), que partilha as reservas de cada interface para cada árvore que usa a interface. Assim, cada CDP pode processar pedidos de sessão numa ou mais árvores, sem a necessidade de sincronização entre os CDPs correlacionados, enquanto o VOPR da árvore não estiver esgotado. Os resultados analíticos e de simulação demonstram que o controlo de sobre-reserva é agregado em cenários descentralizados, mantendo a sinalização de QoS baixa sem perda de largura de banda. Também é desenvolvido um protocolo de controlo de sinalização chamado ACOR Protocol (ACOR-P) para suportar as arquitecturas de centralização e descentralização deste trabalho. O ACOR Estendido (E-ACOR) agrega a VOPR de todas as árvores que se originam no mesmo CDP, e mais pedidos de sessão podem ser processados sem a necessidade de sincronização quando comparado com ACOR. Além disso, E-ACOR introduz um mecanismo para controlar as informações àcerca do congestionamento da rede, e impede a sincronização desnecessária durante o tempo de congestionamento quando os VOPRs esgotam consoante cada pedido de sessão. A avaliação de desempenho, através de resultados analíticos e de simulação, mostra a superioridade do E-ACOR em minimizar o controlo geral da carga da sinalização, mantendo todas as vantagens do ACOR, sem apresentar violações de QoS ou desperdício de recursos. A última parte desta Tese inclui a proposta para recuperação a falhas, o Survivability ACOR (SACOR), o qual permite ter QoS estável em caso de falhas de ligações e nós. Os resultados de desempenho analisados mostram uma capacidade flexível de sobrevivência caracterizada por um tempo de convergência rápido e diferenciação de tráfego com uma utilização eficiente dos recursos. Em resumo, os mecanismos de controlo de recursos propostos nesta Tese fornecem um suporte eficiente e escalável para controlo da rede, como também para os seus principais sub-sistemas (por exemplo, QoS, controlo de recursos, engenharia de tráfego, multicast, etc) e, assim, permitir a otimização do desempenho da rede a nível do controlo global
    corecore