718 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Reputation-guided Evolutionary Scheduling Algorithm for Independent Tasks in inter-Clouds Environments

    Get PDF
    Self-adaptation provides software with flexibility to different behaviours (configurations) it incorporates and the (semi-) autonomous ability to switch between these behaviours in response to changes. To empower clouds with the ability to capture and respond to quality feedback provided by users at runtime, we propose a reputation guided genetic scheduling algorithm for independent tasks. Current resource management services consider evolutionary strategies to improve the performance on resource allocation procedures or tasks scheduling algorithms, but they fail to consider the user as part of the scheduling process. Evolutionary computing offers different methods to find a near-optimal solution. In this paper we extended previous work with new optimisation heuristics for the problem of scheduling. We show how reputation is considered as an optimisation metric, and analyse how our metrics can be considered as upper bounds for others in the optimisation algorithm. By experimental comparison, we show our techniques can lead to optimised results.Peer Reviewe

    A new revenue maximization model using customized plans in cloud service allocation (Applied on a real company case study)

    Get PDF
    Cloud computing is emerging as a promising field offering a variety of computing services to end users. These services are offered at different prices using various pricing schemes and techniques. End users will favor the service provider offering the best quality with the lowest price. Therefore, applying a fair pricing model will attract more customers and achieve higher revenues for service providers. This work focuses on a novel dynamic pricing model which is able to satisfy advance users requirements based on normal fixed price model. This paper considers many factors that affect pricing and user satisfaction, such as fairness, QoS, SLA, and more, by highlighting their importance in recent markets and propose a flexible model which tries to utilize all resources to the highest capacity and offers low prices for underutilized resources. The simulated results shows the appropriateness of dynamic pricing for sharing of computing resources, where providers want to have more customers as a managerial decision and even more income in total.Keywords: Cloud Computing; Digital Pricing; Dynamic Pricin

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that oïŹ€ers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and eïŹ€ective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our ïŹrst contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The ïŹrst sub-problem is the server power mode detection (sleep or active). The second sub-problem is to ïŹnd an eïŹ€ective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our ïŹfth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy eïŹƒciency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Evaluation of an Accounting Model for Dynamic Virtual Organizations

    Get PDF
    Accounting of Grid resource and service usage determines the central support activity for Grid systems to be adopted as a means for service-oriented computing in Dynamic Virtual Organizations (DVO). An all-embracing study of existing Grid accounting systems has revealed that these approaches focus primarily on technical precision, while they lack a foundation of appropriate economic accounting principles and the support for multi-provider scenarios or virtualization concepts. Consequently, a new, flexible, resource-based accounting model for DVOs was developed, combining technical and economic accounting by means of Activity-based Costing. Driven by a functional evaluation, this paper pursues a full-fledged evaluation of the new, generically applicable Grid accounting model. This is done for the specific environment of the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. Thus, a detailed evaluation methodology and evaluation environment is outlined, leading to actual model-based cost calculations for a defined set of considered Grid services. The results gained are analyzed and respective conclusions on model applicability, optimizations, and further extensions are draw

    Constructing distributed time-critical applications using cognitive enabled services

    Get PDF
    Time-critical analytics applications are increasingly making use of distributed service interfaces (e.g., micro-services) that support the rapid construction of new applications by dynamically linking the services into different workflow configurations. Traditional service-based applications, in fixed networks, are typically constructed and managed centrally and assume stable service endpoints and adequate network connectivity. Constructing and maintaining such applications in dynamic heterogeneous wireless networked environments, where limited bandwidth and transient connectivity are commonplace, presents significant challenges and makes centralized application construction and management impossible. In this paper we present an architecture which is capable of providing an adaptable and resilient method for on-demand decentralized construction and management of complex time-critical applications in such environments. The approach uses a Vector Symbolic Architecture (VSA) to compactly represent an application as a single semantic vector that encodes the service interfaces, workflow, and the time-critical constraints required. By extending existing services interfaces, with a simple cognitive layer that can interpret and exchange the vectors, we show how the required services can be dynamically discovered and interconnected in a completely decentralized manner. We demonstrate the viability of this approach by using a VSA to encode various time-critical data analytics workflows. We show that these vectors can be used to dynamically construct and run applications using services that are distributed across an emulated Mobile Ad-Hoc Wireless Network (MANET). Scalability is demonstrated via an empirical evaluation

    Cloud Workload Allocation Approaches for Quality of Service Guarantee and Cybersecurity Risk Management

    Get PDF
    It has become a dominant trend in industry to adopt cloud computing --thanks to its unique advantages in flexibility, scalability, elasticity and cost efficiency -- for providing online cloud services over the Internet using large-scale data centers. In the meantime, the relentless increase in demand for affordable and high-quality cloud-based services, for individuals and businesses, has led to tremendously high power consumption and operating expense and thus has posed pressing challenges on cloud service providers in finding efficient resource allocation policies. Allowing several services or Virtual Machines (VMs) to commonly share the cloud\u27s infrastructure enables cloud providers to optimize resource usage, power consumption, and operating expense. However, servers sharing among users and VMs causes performance degradation and results in cybersecurity risks. Consequently, how to develop efficient and effective resource management policies to make the appropriate decisions to optimize the trade-offs among resource usage, service quality, and cybersecurity loss plays a vital role in the sustainable future of cloud computing. In this dissertation, we focus on cloud workload allocation problems for resource optimization subject to Quality of Service (QoS) guarantee and cybersecurity risk constraints. To facilitate our research, we first develop a cloud computing prototype that we utilize to empirically validate the performance of different proposed cloud resource management schemes under a close to practical, but also isolated and well-controlled, environment. We then focus our research on the resource management policies for real-time cloud services with QoS guarantee. Based on queuing model with reneging, we establish and formally prove a series of fundamental principles, between service timing characteristics and their resource demands, and based on which we develop several novel resource management algorithms that statically guarantee the QoS requirements for cloud users. We then study the problem of mitigating cybersecurity risk and loss in cloud data centers via cloud resource management. We employ game theory to model the VM-to-VM interdependent cybersecurity risks in cloud clusters. We then conduct a thorough analysis based on our game-theory-based model and develop several algorithms for cybersecurity risk management. Specifically, we start our cybersecurity research from a simple case with only two types of VMs and next extend it to a more general case with an arbitrary number of VM types. Our intensive numerical and experimental results show that our proposed algorithms can significantly outperform the existing methodologies for large-scale cloud data centers in terms of resource usage, cybersecurity loss, and computational effectiveness

    A requirement-driven mechanism for the management of distributed infrastructures

    Get PDF
    • 

    corecore