97 research outputs found

    Modelling decision tables from data.

    Get PDF
    On most datasets induction algorithms can generate very accurate classifiers. Sometimes, however, these classifiers are very hard to understand for humans. Therefore, in this paper it is investigated how we can present the extracted knowledge to the user by means of decision tables. Decision tables are very easy to understand. Furthermore, decision tables provide interesting facilities to check the extracted knowledge on consistency and completeness. In this paper, it is demonstrated how a consistent and complete DT can be modelled starting from raw data. The proposed method is empirically validated on several benchmarking datasets. It is shown that the modelling decision tables are sufficiently small. This allows easy consultation of the represented knowledge.Data;

    Application of decision trees and multivariate regression trees in design and optimization

    Get PDF
    Induction of decision trees and regression trees is a powerful technique not only for performing ordinary classification and regression analysis but also for discovering the often complex knowledge which describes the input-output behavior of a learning system in qualitative forms;In the area of classification (discrimination analysis), a new technique called IDea is presented for performing incremental learning with decision trees. It is demonstrated that IDea\u27s incremental learning can greatly reduce the spatial complexity of a given set of training examples. Furthermore, it is shown that this reduction in complexity can also be used as an effective tool for improving the learning efficiency of other types of inductive learners such as standard backpropagation neural networks;In the area of regression analysis, a new methodology for performing multiobjective optimization has been developed. Specifically, we demonstrate that muitiple-objective optimization through induction of multivariate regression trees is a powerful alternative to the conventional vector optimization techniques. Furthermore, in an attempt to investigate the effect of various types of splitting rules on the overall performance of the optimizing system, we present a tree partitioning algorithm which utilizes a number of techniques derived from diverse fields of statistics and fuzzy logic. These include: two multivariate statistical approaches based on dispersion matrices, an information-theoretic measure of covariance complexity which is typically used for obtaining multivariate linear models, two newly-formulated fuzzy splitting rules based on Pearson\u27s parametric and Kendall\u27s nonparametric measures of association, Bellman and Zadeh\u27s fuzzy decision-maximizing approach within an inductive framework, and finally, the multidimensional extension of a widely-used fuzzy entropy measure. The advantages of this new approach to optimization are highlighted by presenting three examples which respectively deal with design of a three-bar truss, a beam, and an electric discharge machining (EDM) process

    Ants constructing rule-based classifiers.

    Get PDF
    Classifiers; Data; Data mining; Studies;

    Comparison of Different Machine Learning Algorithms for Breast Cancer Recurrence Classification

    Get PDF
    In this paper we compared some machine learning algorithms to predict recurrence of breast cancer and see which model used gives best accuracy for the prediction. In this study we used database donated by University Medical Centre, Institute of Oncology, Ljubljana, Slovenia. The preprocessed dataset includes 286 instances, 9 attributes and 1 class attribute. Firstly, we used attribute evaluation to see which attribute is more effective on class attribute. Secondly we have explored three different algorithms: C4.5, Random Forest and K Nearest Neighbor. Several data mining tools have been applied with these 3 algorithms to explore which model is better on accuracy. Finally we have found that C4.5 algorithm is the best for our dataset: breast cancer recurrence

    Learning preferences for personalisation in a pervasive environment

    Get PDF
    With ever increasing accessibility to technological devices, services and applications there is also an increasing burden on the end user to manage and configure such resources. This burden will continue to increase as the vision of pervasive environments, with ubiquitous access to a plethora of resources, continues to become a reality. It is key that appropriate mechanisms to relieve the user of such burdens are developed and provided. These mechanisms include personalisation systems that can adapt resources on behalf of the user in an appropriate way based on the user's current context and goals. The key knowledge base of many personalisation systems is the set of user preferences that indicate what adaptations should be performed under which contextual situations. This thesis investigates the challenges of developing a system that can learn such preferences by monitoring user behaviour within a pervasive environment. Based on the findings of related works and experience from EU project research, several key design requirements for such a system are identified. These requirements are used to drive the design of a system that can learn accurate and up to date preferences for personalisation in a pervasive environment. A standalone prototype of the preference learning system has been developed. In addition the preference learning system has been integrated into a pervasive platform developed through an EU research project. The preference learning system is fully evaluated in terms of its machine learning performance and also its utility in a pervasive environment with real end users
    • ā€¦
    corecore