4,832 research outputs found

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

    Get PDF
    While the traditional objective of parallel/distributed simulation techniques has been mainly in improving performance and making very large models tractable, more recent research trends targeted complementary aspects, such as the “ease of programming”. Along this line, a recent proposal called Event and Cross State (ECS) synchronization, stands as a solution allowing to break the traditional programming rules proper of Parallel Discrete Event Simulation (PDES) systems, where the application code processing a specific event is only allowed to access the state (namely the memory image) of the target simulation object. In fact with ECS, the programmer is allowed to write ANSI-C event-handlers capable of accessing (in either read or write mode) the state of whichever simulation object included in the simulation model. Correct concurrent execution of events, e.g., on top of multi-core machines, is guaranteed by ECS with no intervention by the programmer, who is in practice exposed to a sequential-style programming model where events are processed one at a time, and have the ability to access the current memory image of the whole simulation model, namely the collection of the states of any involved object. This can strongly simplify the development of specific models, e.g., by avoiding the need for passing state information across concurrent objects in the form of events. In this article we investigate on both programmability and performance aspects related to developing/supporting a multi-agent exploration model on top of the ROOT-Sim PDES platform, which supports ECS

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )
    • 

    corecore