223,642 research outputs found

    Correlative Microscopy of Morphology and Luminescence of Cu porphyrin aggregates

    Full text link
    Transfer of energy and information through molecule aggregates requires as one important building block anisotropic, cable-like structures. Knowledge on the spatial correlation of luminescence and morphology represents a prerequisite in the understanding of internal processes and will be important for architecting suitable landscapes. In this context we study the morphology, fluorescence and phosphorescence of molecule aggregate structures on surfaces in a spatially correlative way. We consider as two morphologies, lengthy strands and isotropic islands. It turns out that phosphorescence is quite strong compared to fluorescence and the spatial variation of the observed intensities is largely in line with the amount of dye. However in proportion, the strands exhibit more fluorescence than the isotropic islands suggesting weaker non-radiative channels. The ratio fluorescence to phosphorescence appears to be correlated with the degree of aggregation or internal order. The heights at which luminescence saturates is explained in the context of attenuation and emission multireflection, inside the dye. This is supported by correlative photoemission electron microscopy which is more sensitive to the surface region. The lengthy structures exhibit a pronounced polarization dependence of the luminescence with a relative dichroism up to about 60%, revealing substantial perpendicular orientation preference of the molecules with respect to the substrate and parallel with respect to the strands

    MMSi20_{20}H20_{20} Aggregates: From Simple Building Blocks to Highly Magnetic Functionalized Materials

    Full text link
    Density-functional theory based global geometry optimization is used to scrutinize the possibility of using endohedrally-doped hydrogenated Si clusters as building blocks for constructing highly magnetic materials. In contrast to the known clathrate-type facet-sharing, the clusters exhibit a predisposition to aggregation through double Si-Si bridge bonds. For the prototypical CrSi20_{20}H20_{20} cluster we show that reducing the degree of hydrogenation may be used to control the number of reactive sites to which other cages can be attached, while still preserving the structural integrity of the building block itself. This leads to a toolbox of CrSi20_{20}H20−2n_{20-2n} monomers with different number of double "docking sites", that allows building network architectures of any morphology. For (CrSi20_{20}H18_{18})2_{2} dimer and [CrSi20_{20}H16_{16}](CrSi20_{20}H18_{18})2_{2} trimer structures we illustrate that such aggregates conserve the high spin moments of the dopant atoms and are therefore most attractive candidates for cluster-assembled materials with unique magnetic properties. The study suggests that the structural completion of the individual endohedral cages within the doubly-bridge bonded structures and the high thermodynamic stability of the obtained aggregates are crucial for potential synthetic polymerization routes viavia controlled dehydrogenation

    Beam-like topologically interlocked structures with hierarchical interlocking

    Full text link
    Topologically interlocked materials and structures, which are assemblies of unbonded interlocking building blocks, are a promising concept for versatile structural applications. They have been shown to display exceptional mechanical properties including outstanding combinations of stiffness, strength, and toughness, beyond those achievable with common engineering materials. Recent work established the theoretical upper limit for the strength and toughness of beam-like topologically interlocked structures. However, this theoretical limit is only achievable for structures with unrealistically high friction coefficients and, therefore, it remains unknown if it is achievable in actual structures. Here, we propose, inspired by biological systems, a hierarchical approach for topological interlocking which overcomes these limitations and provides a path toward optimized mechanical performance. We consider beam-like topologically interlocked structures with geometrically designed surface morphologies, which increases the effective frictional strength of the interfaces, and hence enables us to achieve the theoretical limit with realistic friction coefficients. Using numerical simulations, we examine the effect of sinusoidal surface morphology with controllable amplitude and wavelength on the maximum load-carrying capacity of the structure. Our study discusses various effects of architecturing the surface morphology of beam-like topological interlocked structures, and most notably, it demonstrates its ability to significantly enhance the structure's mechanical performance

    Self Assembled Clusters of Spheres Related to Spherical Codes

    Full text link
    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres, and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology and dynamics. We find that some N-clusters exhibit collective particle rearrangements, and these collective modes are unique to a given cluster size N. We present a surprising result for the equilibrium structure of a 5-cluster, which prefers an asymmetric square pyramid arrangement over a more symmetric arrangement. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.Comment: 15 pages, 10 figure

    Dispersity effects in polymer self-assemblies : a matter of hierarchical control

    Get PDF
    Advanced applications of polymeric self-assembled structures require a stringent degree of control over such aspects as functionality location, morphology and size of the resulting assemblies. A loss of control in the polymeric building blocks of these assemblies can have drastic effects upon the final morphology or function of these structures. Gaining precise control over various aspects of the polymers, such as chain lengths and architecture, blocking efficiency and compositional distribution is a challenge and, hence, measuring the intrinsic mass and size dispersity within these areas is an important aspect of such control. It is of great importance that a good handle on how to improve control and accurately measure it is achieved. Additionally dispersity of the final structure can also play a large part in the suitability for a desired application. In this Tutorial Review, we aim to highlight the different aspects of dispersity that are often overlooked and the effect that a lack of control can have on both the polymer and the final assembled structure

    Morphology and conduction properties of graphite-filled immiscible PVDF/PPgMA blends

    Get PDF
    Graphite was dispersed in immiscible polyvinylidene "uoride/maleated polypropylene (PVDF/PPgMA) blends to improve electrical and thermal conductive properties by building a double-percolation structure. The morphology of PVDF/PPgMA blends was !rst investigated for several compositions by selective solvent extraction, scanning electron microscopy, and dynamic mechanical thermal analysis. Blends of PVDF and PPgMA were prepared in different relative fractions, and a PVDF/PPgMA ratio of 7/3 showed a well-co-continuous structure. From this blend, the morphology and properties of composites with different concentrations of graphite were investigated to prepare double-percolated structures. Graphite was observed to selectively localize in the PPgMA phase. The electrical and thermal conductive properties of graphite-containing blends were measured, showing enhanced conductivity for the double-percolation structures compared with single-polymer composites containing the same graphite loadings
    • …
    corecore