66 research outputs found

    Smart Chips for Smart Surroundings -- 4S

    Get PDF
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept

    VLSI design of configurable low-power coarse-grained array architecture

    Get PDF
    Biomedical signal acquisition from in- or on-body sensors often requires local (on-node) low-level pre-processing before the data are sent to a remote node for aggregation and further processing. Local processing is required for many different operations, which include signal cleanup (noise removal), sensor calibration, event detection and data compression. In this environment, processing is subject to aggressive energy consumption restrictions, while often operating under real-time requirements. These conflicting requirements impose the use of dedicated circuits addressing a very specific task or the use of domain-specific customization to obtain significant gains in power efficiency. However, economic and time-to-market constraints often make the development or use of application-specific platforms very risky.One way to address these challenges is to develop a sensor node with a general-purpose architecture combining a low-power, low-performance general microprocessor or micro-controller with a coarse-grained reconfigurable array (CGRA) acting as an accelerator. A CGRA consists of a fixed number of processing units (e.g., ALUs) whose function and interconnections are determined by some configuration data.The objective of this work is to create an RTL-level description of a low-power CGRA of ALUs and produce a low-power VLSI (standard cell) implementation, that supports power-saving features.The CGRA implementation should use as few resources as possible and fully exploit the intended operation environment. The design will be evaluated with a set of simple signal processing task
    • …
    corecore