1,035 research outputs found

    A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems

    Full text link
    We consider a class of nonconvex nonsmooth optimization problems whose objective is the sum of a smooth function and a finite number of nonnegative proper closed possibly nonsmooth functions (whose proximal mappings are easy to compute), some of which are further composed with linear maps. This kind of problems arises naturally in various applications when different regularizers are introduced for inducing simultaneous structures in the solutions. Solving these problems, however, can be challenging because of the coupled nonsmooth functions: the corresponding proximal mapping can be hard to compute so that standard first-order methods such as the proximal gradient algorithm cannot be applied efficiently. In this paper, we propose a successive difference-of-convex approximation method for solving this kind of problems. In this algorithm, we approximate the nonsmooth functions by their Moreau envelopes in each iteration. Making use of the simple observation that Moreau envelopes of nonnegative proper closed functions are continuous {\em difference-of-convex} functions, we can then approximately minimize the approximation function by first-order methods with suitable majorization techniques. These first-order methods can be implemented efficiently thanks to the fact that the proximal mapping of {\em each} nonsmooth function is easy to compute. Under suitable assumptions, we prove that the sequence generated by our method is bounded and any accumulation point is a stationary point of the objective. We also discuss how our method can be applied to concrete applications such as nonconvex fused regularized optimization problems and simultaneously structured matrix optimization problems, and illustrate the performance numerically for these two specific applications

    Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation

    Full text link
    We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale 1\ell_1-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.Comment: 51 pages, 9 figure

    A quasi-Newton proximal splitting method

    Get PDF
    A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration of convex minimization problems, and leads to an elegant quasi-Newton method. The optimization method compares favorably against state-of-the-art alternatives. The algorithm has extensive applications including signal processing, sparse recovery and machine learning and classification

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension
    corecore