27 research outputs found

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    Automated Analysis of Compositional Multi-Agent Systems

    Get PDF
    Abstract. An approach for handling the complex dynamics of a multi-agent system is based on distinguishing aggregation levels. The behaviour at a given aggregation level is specified by a set of dynamic properties at that level, expressed in some (temporal) language. Such behavioural specifications may be complex and difficult to analyse. To enable automated analysis of system specifications, a simpler format is required. To this end, a specification at a lower aggregation level can be created, describing basic steps in the processes of a system. This paper presents a method and tool to support the automated creation of such a specification, as a refinement of a given higher level specification. The generated specification has a simple format which can easily be used for analysis. This paper describes an approach for automated verification of logical consequences of specifications using model checking techniques

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results

    No full text
    We investigate a class of first-order temporal-epistemic logics for reasoning about multiagent systems. We encode typical properties of systems including perfect recall, synchronicity, no learning, and having a unique initial state in terms of variants of quantified interpreted systems, a first-order extension of interpreted systems. We identify several monodic fragments of first-order temporal-epistemic logic and show their completeness with respect to their corresponding classes of quantified interpreted systems. 1
    corecore