18 research outputs found

    Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation

    Get PDF
    An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique

    FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

    Get PDF
    We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS. We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.</p

    The calculus according to S. F. Lacroix (1765-1843)

    Get PDF
    Silvestre François Lacroix (Paris. 1765 - ibid., 1843) was not a prominent mathematical researcher, but he was certainly a most influential mathematical book author. His most famous book is a monumental Traité du calcul différentiel et du calcul intégral (three large volumes, 1797-1800; a second edition appeared in 1810-1819) - an encyclopaedic appraisal of 18th-century calculus. He also published many textbooks, one of which is closely associated to this large Traité: the Traité élémentaire du calcul différentiel et du calcul intégral (first edition in 1802; four more editions in Lacroix's lifetime; four posthumous editions). Although most historians acknowledge the great influence of Lacroix's large Traité in early 19th-century mathematics it has not been thoroughly studied. This thesis is a contribution for correcting this omission. The focus is on its first edition, but the second edition and the Traité élémentaire, are also addressed. The thesis starts with a short biography of Lacroix, followed by an overview of the first edition of the large Traité. Next corne five chapters where particular aspects are analyzed in detail: the foundations of the calculus, analytic and differential geometry, approximate integration and conceptions of the integral, types of solutions of differential equations (singular/complete/general integrals, geometrical interpretations, and generality of arbitrary functions), and three aspects related to finite differences and series (the use of subscript indices, types of solutions of finite difference equations, and mixed difference equations); for all these aspects Lacroix's treatment is compared to the 18th-century background, and to his likely sources. Then we examine how the large Traité was adapted to a textbook - the Traité élémentaire, we take a look at the second edition of the large Traité, and conclude the body of the thesis with some final remarks

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    The calculus according to S. F. Lacroix (1765-1843)

    Get PDF
    Silvestre François Lacroix (Paris. 1765 - ibid., 1843) was not a prominent mathematical researcher, but he was certainly a most influential mathematical book author. His most famous book is a monumental Traité du calcul différentiel et du calcul intégral (three large volumes, 1797-1800; a second edition appeared in 1810-1819) - an encyclopaedic appraisal of 18th-century calculus. He also published many textbooks, one of which is closely associated to this large Traité: the Traité élémentaire du calcul différentiel et du calcul intégral (first edition in 1802; four more editions in Lacroix's lifetime; four posthumous editions). Although most historians acknowledge the great influence of Lacroix's large Traité in early 19th-century mathematics it has not been thoroughly studied. This thesis is a contribution for correcting this omission. The focus is on its first edition, but the second edition and the Traité élémentaire, are also addressed. The thesis starts with a short biography of Lacroix, followed by an overview of the first edition of the large Traité. Next corne five chapters where particular aspects are analyzed in detail: the foundations of the calculus, analytic and differential geometry, approximate integration and conceptions of the integral, types of solutions of differential equations (singular/complete/general integrals, geometrical interpretations, and generality of arbitrary functions), and three aspects related to finite differences and series (the use of subscript indices, types of solutions of finite difference equations, and mixed difference equations); for all these aspects Lacroix's treatment is compared to the 18th-century background, and to his likely sources. Then we examine how the large Traité was adapted to a textbook - the Traité élémentaire, we take a look at the second edition of the large Traité, and conclude the body of the thesis with some final remarks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore