1,125 research outputs found

    A Digital Signature Scheme for Long-Term Security

    Full text link
    In this paper we propose a signature scheme based on two intractable problems, namely the integer factorization problem and the discrete logarithm problem for elliptic curves. It is suitable for applications requiring long-term security and provides a more efficient solution than the existing ones

    Blind multi-signature scheme based on factoring and discrete logarithm problem

    Get PDF
    One of the important objectives of information security systems is providing authentication of the electronic documents and messages. In that, blind signature schemes are an important solution to protect the privacy of users in security electronic transactions by highlighting the anonymity of participating parties. Many studies have focused on blind signature schemes, however, most of the studied schemes are based on single computationally difficult problem. Also digital signature schemes from two difficult problems were proposed but the fact is that only finding solution to single hard problem then these digital signature schemes are breakable. In this paper, we propose a new signature schemes base on the combination of the RSA and Schnorr signature schemes which are based on two hard problems: IFP and DLP. Then expanding to propose a single blind signature scheme, a blind multi-signature scheme, which are based on new baseline schemes

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Practical IBC Using Hybrid-Mode Problems: Factoring and Discrete Logarithm

    Full text link
    Shamir proposed the concept of the ID-based cryptosystem (IBC) in 1984. Instead of generating and publishing a public key for each user, the ID-based scheme permits each user to choose his name or network address as his public key. This is advantageous to public-key cryptosystems because the public-key verification is so easy and direct. In such a way, a large public key file is not required. Since new cryptographic schemes always face security challenges and many integer factorization problem and discrete logarithm based cryptographic systems have been deployed, therefore, the purpose of this paper is to design practical IBC using hybrid mode problems factoring and discrete logarithm. We consider the security against a conspiracy of some entities in the proposed system and show the possibility of establishing a more secure system

    On Statistical Query Sampling and NMR Quantum Computing

    Full text link
    We introduce a ``Statistical Query Sampling'' model, in which the goal of an algorithm is to produce an element in a hidden set SsubseteqbitnSsubseteqbit^n with reasonable probability. The algorithm gains information about SS through oracle calls (statistical queries), where the algorithm submits a query function g(cdot)g(cdot) and receives an approximation to PrxinS[g(x)=1]Pr_{x in S}[g(x)=1]. We show how this model is related to NMR quantum computing, in which only statistical properties of an ensemble of quantum systems can be measured, and in particular to the question of whether one can translate standard quantum algorithms to the NMR setting without putting all of their classical post-processing into the quantum system. Using Fourier analysis techniques developed in the related context of {em statistical query learning}, we prove a number of lower bounds (both information-theoretic and cryptographic) on the ability of algorithms to produces an xinSxin S, even when the set SS is fairly simple. These lower bounds point out a difficulty in efficiently applying NMR quantum computing to algorithms such as Shor's and Simon's algorithm that involve significant classical post-processing. We also explicitly relate the notion of statistical query sampling to that of statistical query learning. An extended abstract appeared in the 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003), 2003. Keywords: statistical query, NMR quantum computing, lower boundComment: 17 pages, no figures. Appeared in 18th Aunnual IEEE Conference of Computational Complexity (CCC 2003

    Practical IBC using Hybrid-Mode Problems: Factoring and Discrete Logarithm

    Get PDF
    Shamir proposed the concept of the ID-based cryptosystem (IBC) in 1984. Instead of generating and publishing a public key for each user, the ID-based scheme permits each user to choose his name or network address as his public key. This is advantageous to public-key cryptosystems because the public-key verification is so easy and direct. In such a way, a large public key file is not required. Since new cryptographic schemes always face security challenges and many integer factorization problem and discrete logarithm based cryptographic systems have been deployed, therefore, the purpose of this paper is to design practical IBC using hybrid mode problems factoring and discrete logarithm. We consider the security against a conspiracy of some entities in the proposed system and show the possibility of establishing a more secure system

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gxG1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/xG1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    The Rabin cryptosystem revisited

    Full text link
    The Rabin public-key cryptosystem is revisited with a focus on the problem of identifying the encrypted message unambiguously for any pair of primes. In particular, a deterministic scheme using quartic reciprocity is described that works for primes congruent 5 modulo 8, a case that was still open. Both theoretical and practical solutions are presented. The Rabin signature is also reconsidered and a deterministic padding mechanism is proposed.Comment: minor review + introduction of a deterministic scheme using quartic reciprocity that works for primes congruent 5 modulo
    corecore