36 research outputs found

    Incomplete Variable Multigranulation Rough Sets Decision

    Full text link

    NMGRS: Neighborhood-based multigranulation rough sets

    Get PDF
    AbstractRecently, a multigranulation rough set (MGRS) has become a new direction in rough set theory, which is based on multiple binary relations on the universe. However, it is worth noticing that the original MGRS can not be used to discover knowledge from information systems with various domains of attributes. In order to extend the theory of MGRS, the objective of this study is to develop a so-called neighborhood-based multigranulation rough set (NMGRS) in the framework of multigranulation rough sets. Furthermore, by using two different approximating strategies, i.e., seeking common reserving difference and seeking common rejecting difference, we first present optimistic and pessimistic 1-type neighborhood-based multigranulation rough sets and optimistic and pessimistic 2-type neighborhood-based multigranulation rough sets, respectively. Through analyzing several important properties of neighborhood-based multigranulation rough sets, we find that the new rough sets degenerate to the original MGRS when the size of neighborhood equals zero. To obtain covering reducts under neighborhood-based multigranulation rough sets, we then propose a new definition of covering reduct to describe the smallest attribute subset that preserves the consistency of the neighborhood decision system, which can be calculated by Chen’s discernibility matrix approach. These results show that the proposed NMGRS largely extends the theory and application of classical MGRS in the context of multiple granulations

    A Comprehensive study on (α,β)-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation

    Get PDF
    The rough set (RS) and multi-granulation RS (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, the bipolar fuzzy sets (BFSs) are effective tools for handling bipolarity and fuzziness of the data. In this study, with the description of the background of risk decision-making problems in reality, we present (α,β) (\alpha, \beta) -optimistic multi-granulation bipolar fuzzified preference rough sets ((α,β)o (\alpha, \beta)^o -MG-BFPRSs) and (α,β) (\alpha, \beta) -pessimistic multi-granulation bipolar fuzzified preference rough sets ((α,β)p (\alpha, \beta)^p -MG-BFPRSs) using bipolar fuzzy preference relation (BFPR). Subsequently, the relevant properties and results of both (α,β)o (\alpha, \beta)^o -MG-BFPRSs and (α,β)p (\alpha, \beta)^p -MG-BFPRSs are investigated in detail. At the same time, a relationship among the (α,β) (\alpha, \beta) -BFPRSs, (α,β)o (\alpha, \beta)^o -MG-BFPRSs and (α,β)p (\alpha, \beta)^p -MG-BFPRSs is given

    Granular Space Reduction to a β

    Get PDF
    Multigranulation rough set is an extension of classical rough set, and optimistic multigranulation and pessimistic multigranulation are two special cases of it. β multigranulation rough set is a more generalized multigranulation rough set. In this paper, we first introduce fuzzy rough theory into β multigranulation rough set to construct a β multigranulation fuzzy rough set, which can be used to deal with continuous data; then some properties are discussed. Reduction is an important issue of multigranulation rough set, and an algorithm of granular space reduction to β multigranulation fuzzy rough set for preserving positive region is proposed. To test the algorithm, experiments are taken on five UCI data sets with different values of β. The results show the effectiveness of the proposed algorithm

    Rough Set Approach to Incomplete Multiscale Information System

    Get PDF
    Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore