278,265 research outputs found

    A Lie Algebra for Closed Strings, Spin Chains and Gauge Theories

    Get PDF
    We consider quantum dynamical systems whose degrees of freedom are described by N×NN \times N matrices, in the planar limit N→∞N \to \infty. Examples are gauge theoires and the M(atrix)-theory of strings. States invariant under U(N) are `closed strings', modelled by traces of products of matrices. We have discovered that the U(N)-invariant opertors acting on both open and closed string states form a remarkable new Lie algebra which we will call the heterix algebra. (The simplest special case, with one degree of freedom, is an extension of the Virasoro algebra by the infinite-dimensional general linear algebra.) Furthermore, these operators acting on closed string states only form a quotient algebra of the heterix algebra. We will call this quotient algebra the cyclix algebra. We express the Hamiltonian of some gauge field theories (like those with adjoint matter fields and dimensionally reduced pure QCD models) as elements of this Lie algebra. Finally, we apply this cyclix algebra to establish an isomorphism between certain planar matrix models and quantum spin chain systems. Thus we obtain some matrix models solvable in the planar limit; e.g., matrix models associated with the Ising model, the XYZ model, models satisfying the Dolan-Grady condition and the chiral Potts model. Thus our cyclix Lie algebra described the dynamical symmetries of quantum spin chain systems, large-N gauge field theories, and the M(atrix)-theory of strings.Comment: 52 pages, 8 eps figures, LaTeX2.09; this is the published versio

    Field Theory of Open and Closed Strings with Discrete Target Space

    Full text link
    We study a U(N)U(N)-invariant vector+matrix chain with the color structure of a lattice gauge theory with quarks and interpret it as a theory of open andclosed strings with target space Z\Z. The string field theory is constructed as a quasiclassical expansion for the Wilson loops and lines in this model. In a particular parametrization this is a theory of two scalar massless fields defined in the half-space {x∈Z,τ>0}\{x\in \Z , \tau >0\} . The extra dimension τ\tau is related to the longitudinal mode of the strings. The topology-changing string interactions are described by a local potential. The closed string interaction is nonzero only at boundary τ=0\tau =0 while the open string interaction falls exponentially with τ\tau.Comment: 15 pages, harvmac. no figures; some typos corrected and a reference adde

    Multidimensional Classical and Quantum Cosmology with Intersecting p-branes

    Get PDF
    Multidimensional cosmological model describing the evolution of n+1 Einstein spaces in the theory with several scalar fields and forms is considered. When a (electro-magnetic composite) p-brane Ansatz is adopted the field equations are reduced to the equations for Toda-like system. The Wheeler-De Witt equation is obtained. In the case when n "internal" spaces are Ricci-flat, one space M_0 has a non-zero curvature, and all p-branes do not "live" in M_0, the classical and quantum solutions are obtained if certain orthogonality relations on parameters are imposed. Spherically-symmetric solutions with intersecting non-extremal p-branes are singled out. A non-orthogonal generalization of intersection rules corresponding to (open, closed) Toda lattices is obtained. A chain of bosonic D > 11 models (that may be related to hypothetical higher dimensional supergravities and F-theories) is suggested.Comment: 26 pages, Latex. Submit. to J. Math. Phy

    Integrability in N=2 superconformal gauge theories

    Get PDF
    AbstractAny N=2 superconformal gauge theory (including N=4 SYM) contains a set of local operators made only out of fields in the N=2 vector multiplet that is closed under renormalization to all loops, namely the SU(2,1|2) sector. For planar N=4 SYM the spectrum of local operators can be obtained by mapping the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the coupling constant. We present a diagrammatic argument that for any planar N=2 superconformal gauge theory the SU(2,1|2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N=4 SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions can be, in principle, read off from the N=4 ones up to this redefinition

    Causal loops: logically consistent correlations, time travel, and computation

    Get PDF
    Causal loops are loops in cause-effect chains: An effect can be the cause of that effect's cause. We show that causal loops can be unproblematic, and explore them from different points of view. This thesis is motivated by quantum theory, general relativity, and quantum gravity. By accepting all of quantum theory one can ask whether the possibility to take superpositions extends to causal structures. Then again, quantum theory comes with conceptual problems: Can we overcome these problems by dropping causality? General relativity is consistent with space-time geometries that allow for time-travel: What happens to systems traveling along closed time-like curves, are there reasons to rule out the existence of closed time-like curves in nature? Finally, a candidate for a theory of quantum gravity is quantum theory with a different, relaxed space-time geometry. Motivated by these questions, we explore the classical world of the non-causal. This world is non-empty; and what can happen in such a world is sometimes weird, but not too crazy. What is weird is that in these worlds, a party (or event) can be in the future and in the past of some other party (time travel). What is not too crazy is that this theoretical possibility does not lead to any contradiction. Moreover, one can identify logical consistency with the existence of a unique fixed point in a cause-effect chain. This can be understood as follows: No fixed point is the same as having a contradiction (too stiff), multiple fixed points, then again, is the same as having an unspecified system (too loose). This leads to a series of results in that field: Characterization of classical non-causal correlations, closed time- like curves that do not restrict the actions of experimenters, and a self-referential model of computation. We study the computational power of this model and use it to upper bound the computational power of closed time-like curves. Time travel has ever since been term weird, what we show here, however, is that time travel is not too crazy: It is not possible to solve hard problems by traveling through time. Finally, we apply our results on causal loops to other fields: an analysis with Kolmogorov complexity, local and classical simulation of PR-box correlations with closed time-like curves, and a short note on self-referentiality in language

    Aspects of Integrability in N =4 SYM

    Full text link
    Various recently developed connections between supersymmetric Yang-Mills theories in four dimensions and two dimensional integrable systems serve as crucial ingredients in improving our understanding of the AdS/CFT correspondence. In this review, we highlight some connections between superconformal four dimensional Yang-Mills theory and various integrable systems. In particular, we focus on the role of Yangian symmetries in studying the gauge theory dual of closed string excitations. We also briefly review how the gauge theory connects to Calogero models and open quantum spin chains through the study of the gauge theory duals of D3 branes and open strings ending on them. This invited review, written for Modern Physics Letters-A, is based on a seminar given at the Institute of Advanced Study, Princeton.Comment: Invited brief review for Mod. Phys. Lett. A based on a talk at I.A.S, Princeto
    • …
    corecore