509 research outputs found

    A Secure Mobile-based Authentication System

    Get PDF
    Financial information is extremely sensitive. Hence, electronic banking must provide a robust system to authenticate its customers and let them access their data remotely. On the other hand, such system must be usable, affordable, and portable.We propose a challengeresponse based one-time password (OTP) scheme that uses symmetric cryptography in combination with a hardware security module. The proposed protocol safeguards passwords from keyloggers and phishing attacks. Besides, this solution provides convenient mobility for users who want to bank online anytime and anywhere, not just from their own trusted computers.La informació financera és extremadament sensible. Per tant, la banca electrònica ha de proporcionar un sistema robust per autenticar als seus clients i fer-los accedir a les dades de forma remota. D'altra banda, aquest sistema ha de ser usable, accessible, i portàtil. Es proposa una resposta al desafiament basat en una contrasenya única (OTP), esquema que utilitza la criptografia simètrica en combinació amb un mòdul de maquinari de seguretat. Amés, aquesta solució ofereix mobilitat convenient per als usuaris que volen bancària en línia en qualsevol moment i en qualsevol lloc, no només des dels seus propis equips de confiança.La información financiera es extremadamente sensible. Por lo tanto, la banca electrónica debe proporcionar un sistema robusto para autenticar a sus clientes y hacerles acceder a sus datos de forma remota. Por otra parte, dicho sistema debe ser usable, accesible, y portátil. Se propone una respuesta al desafío basado en una contraseña única (OTP), esquema que utiliza la criptografía simétrica en combinación con un módulo hardware de seguridad hardware. Además, esta solución ofrece una movilidad conveniente para los usuarios que quieren la entidad bancaria en línea en cualquier momento y en cualquier lugar, no sólo des de sus propios equipos de confianza

    2FYSH: two-factor authentication you should have for password replacement

    Get PDF
    Password has been the most used authentication system these days. However, strong passwords are hard to remember and unique to every account. Unfortunately, even with the strongest passwords, password authentication system can still be breached by some kind of attacks. 2FYSH is two tokens-based authentication protocol designed to replace the password authentication entirely. The two tokens are a mobile phone and an NFC card. By utilizing mobile phones as one of the tokens, 2FYSH is offering third layer of security for users that lock their phone with some kind of security. 2FYSH is secure since it uses public and private key along with challenge-response protocol. 2FYSH protects the user from usual password attacks such as man-in-the-middle attack, phishing, eavesdropping, brute forcing, shoulder surfing, key logging, and verifier leaking. The secure design of 2FYSH has made 90% of the usability test participants to prefer 2FYSH for securing their sensitive information. This fact makes 2FYSH best applied to secure sensitive data needs such as bank accounts and corporate secrets

    Middleware to Integrate Mobile Devices, Sensors and Cloud Computing

    Get PDF
    International audienc

    CROO: A universal infrastructure and protocol to detect identity fraud

    Get PDF
    Identity fraud (IDF) may be defined as unauthorized exploitation of credential information through the use of false identity. We propose CROO, a universal (i.e. generic) infrastructure and protocol to either prevent IDF (by detecting attempts thereof), or limit its consequences (by identifying cases of previously undetected IDF). CROO is a capture resilient one-time password scheme, whereby each user must carry a personal trusted device used to generate one-time passwords (OTPs) verified by online trusted parties. Multiple trusted parties may be used for increased scalability. OTPs can be used regardless of a transaction’s purpose (e.g. user authentication or financial payment), associated credentials, and online or on-site nature; this makes CROO a universal scheme. OTPs are not sent in cleartext; they are used as keys to compute MACs of hashed transaction information, in a manner allowing OTP-verifying parties to confirm that given user credentials (i.e. OTP-keyed MACs) correspond to claimed hashed transaction details. Hashing transaction details increases user privacy. Each OTP is generated from a PIN-encrypted non-verifiable key; this makes users’ devices resilient to off-line PIN-guessing attacks. CROO’s credentials can be formatted as existing user credentials (e.g. credit cards or driver’s licenses)

    Reuse It Or Lose It: More Efficient Secure Computation Through Reuse of Encrypted Values

    Full text link
    Two-party secure function evaluation (SFE) has become significantly more feasible, even on resource-constrained devices, because of advances in server-aided computation systems. However, there are still bottlenecks, particularly in the input validation stage of a computation. Moreover, SFE research has not yet devoted sufficient attention to the important problem of retaining state after a computation has been performed so that expensive processing does not have to be repeated if a similar computation is done again. This paper presents PartialGC, an SFE system that allows the reuse of encrypted values generated during a garbled-circuit computation. We show that using PartialGC can reduce computation time by as much as 96% and bandwidth by as much as 98% in comparison with previous outsourcing schemes for secure computation. We demonstrate the feasibility of our approach with two sets of experiments, one in which the garbled circuit is evaluated on a mobile device and one in which it is evaluated on a server. We also use PartialGC to build a privacy-preserving "friend finder" application for Android. The reuse of previous inputs to allow stateful evaluation represents a new way of looking at SFE and further reduces computational barriers.Comment: 20 pages, shorter conference version published in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Pages 582-596, ACM New York, NY, US

    An Efficient QR Code Based Web Authentication Scheme

    Get PDF
    Nowadays, web authentication is the main and important measure which guarantees the information security and data privacy. Web authentication provides the basis of user accessibility and data security. In the last few years, frequent outbreaks in the password databases lead to a main concern in the data security. The default method for the web authentication is password only mechanism. There are many security problems associated with the password only approach. Many users have a tendency to reuse the same password in different websites. So when one password is being compromised, it may lead to the password break of the other websites due to the password reuse. In order to improve the security, Two factor authentication (TFA) is strongly recommended. But despite of this, TFA has not been widely accepted in the web authentication mechanism. Due to the high scale and drastic popularity of the mobile phone and an inbuilt function of the barcode scanning through camera lead to a new two factor authentication method. In this paper, the proposed two factor authentication protocol uses mobile phone with one or more camera as the second factor for the authentication. The proposed TFA in web authentication counter various attacks such as man in the middle attack (MITM), phishing attacks and so on. Here password is the first factor and mobile is used as the second factor for the web authentication. The communication between the mobile phone and the PC is with the help of visible light. Visible light communication has many advantages as compared with other communication mechanisms. There is a less cellular cost in this scheme which indicates the user does not need cellular network or Wi-Fi for the authentication
    corecore