635 research outputs found

    The Whalesong

    Get PDF
    Southeast waffle company -- Lightning strikes at UAS -- Please be cautious when on the roadway -- Two questions for elected public servants -- Ethics notice for public servants and their aides -- United Students of UAS -- Student Government hopes to help U of A strategic plan -- Travel paradise for credit -- Creating future leaders -- Winterfest -- Smile! You're on campus camera -- Help for the weary -- Fight fatigue -- Informed-traitor advice -- Friday the 13th quiz -- Web winners: helping you keep tabs on the election -- Young people still making black history -- Haute chocolat

    Recent advances in low-cost particulate matter sensor: calibration and application

    Get PDF
    Particulate matter (PM) has been monitored routinely due to its negative effects on human health and atmospheric visibility. Standard gravimetric measurements and current commercial instruments for field measurements are still expensive and laborious. The high cost of conventional instruments typically limits the number of monitoring sites, which in turn undermines the accuracy of real-time mapping of sources and hotspots of air pollutants with insufficient spatial resolution. The new trends of PM concentration measurement are personalized portable devices for individual customers and networking of large quantity sensors to meet the demand of Big Data. Therefore, low-cost PM sensors have been studied extensively due to their price advantage and compact size. These sensors have been considered as a good supplement of current monitoring sites for high spatial-temporal PM mapping. However, a large concern is the accuracy of these low-cost PM sensors. Multiple types of low-cost PM sensors and monitors were calibrated against reference instruments. All these units demonstrated high linearity against reference instruments with high R2 values for different types of aerosols over a wide range of concentration levels. The question of whether low-cost PM monitors can be considered as a substituent of conventional instruments was discussed, together with how to qualitatively describe the improvement of data quality due to calibrations. A limitation of these sensors and monitors is that their outputs depended highly on particle composition and size, resulting in as high as 10 times difference in the sensor outputs. Optical characterization of low-cost PM sensors (ensemble measurement) was conducted by combining experimental results with Mie scattering theory. The reasons for their dependence on the PM composition and size distribution were studied. To improve accuracy in estimation of mass concentration, an expression for K as a function of the geometric mean diameter, geometric standard deviation, and refractive index is proposed. To get rid of the influence of the refractive index, we propose a new design of a multi-wavelength sensor with a robust data inversion routine to estimate the PM size distribution and refractive index simultaneously. The utility of the networked system with improved sensitivity was demonstrated by deploying it in a woodworking shop. Data collected by the networked system was utilized to construct spatiotemporal PM concentration distributions using an ordinary Kriging method and an Artificial Neural Network model to elucidate particle generation and ventilation processes. Furthermore, for the outdoor environment, data reported by low-cost sensors were compared against satellite data. The remote sensing data could provide a daily calibration of these low-cost sensors. On the other hand, low-cost PM sensors could provide better accuracy to demonstrate the microenvironment

    Spring 2019 Undergraduate Research and Creative Inquiry Symposium Book of Abstracts

    Get PDF
    BOOK OF ABSTRACTS SPRING 2019 NC A&T STATE UNIVERSITY UNDERGRADUATE RESEARCH & CREATIVITY SYMPOSIU

    Scaling the laws of thermal imaging-based whale detection

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 807-824, doi:10.1175/JTECH-D-19-0054.1.Marine mammals are under growing pressure as anthropogenic use of the ocean increases. Ship strikes of large whales and loud underwater sound sources including air guns for marine geophysical prospecting and naval midfrequency sonar are criticized for their possible negative effects on marine mammals. Competent authorities regularly require the implementation of mitigation measures, including vessel speed reductions or shutdown of acoustic sources if marine mammals are sighted in sensitive areas or in predefined exclusion zones around a vessel. To ensure successful mitigation, reliable at-sea detection of animals is crucial. To date, ship-based marine mammal observers are the most commonly implemented detection method; however, thermal (IR) imaging–based automatic detection systems have been used in recent years. This study evaluates thermal imaging–based automatic whale detection technology for its use across different oceans. The performance of this technology is characterized with respect to environmental conditions, and an automatic detection algorithm for whale blows is presented. The technology can detect whales in polar, temperate, and subtropical ocean regimes over distances of up to several kilometers and outperforms marine mammal observers in the number of whales detected. These results show that thermal imaging technology can be used to assist in providing protection for marine mammals against ship strike and acoustic impact across the world’s oceans.This work was funded by the Office of Naval Research (ONR) under Award N000141310856, by the Environmental Studies Research Fund (ESRF; esrfunds.org) under Award 2014-03S and by the Alfred-Wegener-Institute Helmholtz Zentrum für Polar- und Meeresforschung. DPZ and OB declare competing financial interests: 1) Patent US8941728B2, DE102011114084B4: A method for automatic real-time marine mammal detection. The patent describes the ideas basic to the automatic whale detection software as used to acquire and process the data presented in this paper. 2) Licensing of the Tashtego automatic whale detection software to the manufacturer of IR sensor. The authors confirm that these competing financial interests did not alter their adherence good scientific practice. We thank P. Abgrall, J. Coffey, K. Keats, B. Mactavish, V. Moulton, and S. Penney-Belbin for data collection or IR image review. We thank S. Besaw, J. Christian, A. Coombs, P. Coombs, W. Costello, T. Elliott, E. Evans, I. Goudie, C. Jones, K. Knowles, R. Martin, A. Murphy, D. and J. Shepherd; and the staffs at the Irish Loop Express, the Myrick Wireless Interpretive Centre, the Mistaken Point Ecological Reserve, and the lighthouse keepers for logistical assistance at our remote field site. We thank D. Boutilier and B. McDonald (DFO) for assisting us in obtaining license to occupy permits for Cape Race. We thank D. Taylor (ESRF Research Manager) for his support

    Fast and spectrally accurate summation of 2-periodic Stokes potentials

    Full text link
    We derive a Ewald decomposition for the Stokeslet in planar periodicity and a novel PME-type O(N log N) method for the fast evaluation of the resulting sums. The decomposition is the natural 2P counterpart to the classical 3P decomposition by Hasimoto, and is given in an explicit form not found in the literature. Truncation error estimates are provided to aid in selecting parameters. The fast, PME-type, method appears to be the first fast method for computing Stokeslet Ewald sums in planar periodicity, and has three attractive properties: it is spectrally accurate; it uses the minimal amount of memory that a gridded Ewald method can use; and provides clarity regarding numerical errors and how to choose parameters. Analytical and numerical results are give to support this. We explore the practicalities of the proposed method, and survey the computational issues involved in applying it to 2-periodic boundary integral Stokes problems

    Observation of SN2011fe with INTEGRAL. I. Pre--maximum phase

    Get PDF
    SN2011fe was detected by the Palomar Transient Factory on August 24th 2011 in M101 a few hours after the explosion. From the early optical spectra it was immediately realized that it was a Type Ia supernova thus making this event the brightest one discovered in the last twenty years. The distance of the event offered the rare opportunity to perform a detailed observation with the instruments on board of INTEGRAL to detect the gamma-ray emission expected from the decay chains of 56^{56}Ni. The observations were performed in two runs, one before and around the optical maximum, aimed to detect the early emission from the decay of 56^{56}Ni and another after this maximum aimed to detect the emission of 56^{56}Co. The observations performed with the instruments on board of INTEGRAL (SPI, IBIS/ISGRI, JEMX and OMC) have been analyzed and compared with the existing models of gamma-ray emission from such kind of supernovae. In this paper, the analysis of the gamma-ray emission has been restricted to the first epoch. Both, SPI and IBIS/ISGRI, only provide upper-limits to the expected emission due to the decay of 56^{56}Ni. These upper-limits on the gamma-ray flux are of 7.1 ×\times 105^{-5} ph/s/cm2^2 for the 158 keV line and of 2.3 ×\times 104^{-4} ph/s/cm2^2 for the 812 keV line. These bounds allow to reject at the 2σ2\sigma level explosions involving a massive white dwarf, 1\sim 1 M\odot in the sub--Chandrasekhar scenario and specifically all models that would have substantial amounts of radioactive 56^{56}Ni in the outer layers of the exploding star responsible of the SN2011fe event. The optical light curve obtained with the OMC camera also suggests that SN2011fe was the outcome of the explosion, possibly a delayed detonation although other models are possible, of a CO white dwarf that synthesized 0.55\sim 0.55 M_\odot of 56^{56}Ni. For this specific model.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Generic Primitive Detection in Point Clouds Using Novel Minimal Quadric Fits

    Full text link
    We present a novel and effective method for detecting 3D primitives in cluttered, unorganized point clouds, without axillary segmentation or type specification. We consider the quadric surfaces for encapsulating the basic building blocks of our environments - planes, spheres, ellipsoids, cones or cylinders, in a unified fashion. Moreover, quadrics allow us to model higher degree of freedom shapes, such as hyperboloids or paraboloids that could be used in non-rigid settings. We begin by contributing two novel quadric fits targeting 3D point sets that are endowed with tangent space information. Based upon the idea of aligning the quadric gradients with the surface normals, our first formulation is exact and requires as low as four oriented points. The second fit approximates the first, and reduces the computational effort. We theoretically analyze these fits with rigor, and give algebraic and geometric arguments. Next, by re-parameterizing the solution, we devise a new local Hough voting scheme on the null-space coefficients that is combined with RANSAC, reducing the complexity from O(N4)O(N^4) to O(N3)O(N^3) (three points). To the best of our knowledge, this is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes without segmentation. Our extensive qualitative and quantitative results show that our method is efficient and flexible, as well as being accurate.Comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). arXiv admin note: substantial text overlap with arXiv:1803.0719

    Overview of a planned flight test operation for a scaled in-air capturing demonstration

    Get PDF
    Current aerospace research seeks to realize reusable launch vehicle (RLV) missions. One conceptual idea is to capture a returning booster stage in air with another aircraft as proposed by DLR in previous work. Within the H2020 project - Formation flight for in-Air Launcher 1st stage Capturing demonstration (FALCon), we investigate the in-air-capturing (IAC) approach with a demonstration setup of scaled unmanned aerial vehicles to research different aspects of this approach in scaled flight tests. This paper provides an overview of the unmanned IAC demonstrators and the planned experiment setup of the FALCon project, which will be validated in future flight test demonstrations. We describe the details of three flight demonstrators for the reusable launch vehicle, capturing or towing aircraft, and an intelligent coupling device which we developed from scratch for this project. We focus on the safety aspects enabling the implementation of a safe and successful demonstration in a non-segregated European airspace and present our researched aspects of the IAC maneuver. The planned formation requires a relative pose estimation between the involved demonstrators, while the demonstrators perform a rapid unpowered descent. We use an environmental perception setup, based on camera and LiDAR data processing, to solve this challenging task
    corecore