29,321 research outputs found

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    On a Linear Program for Minimum-Weight Triangulation

    Full text link
    Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time constant-factor approximation algorithm, and a variety of effective polynomial- time heuristics that, for many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but previously no connection was known between any LP and any approximation algorithm or heuristic for MWT. Here we show the first such connections: for an LP formulation due to Dantzig et al. (1985): (i) the integrality gap is bounded by a constant; (ii) given any instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n1−1/d)n^{O(n^{1-1/d})} running time was presented for any d≥2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n1−1/d−ϵ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n1−1/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n1−1/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    Higher signature Delaunay decompositions

    Full text link
    A Delaunay decomposition is a cell decomposition in R^d for which each cell is inscribed in a Euclidean ball which is empty of all other vertices. This article introduces a generalization of the Delaunay decomposition in which the Euclidean balls in the empty ball condition are replaced by other families of regions bounded by certain quadratic hypersurfaces. This generalized notion is adaptable to geometric contexts in which the natural space from which the point set is sampled is not Euclidean, but rather some other flat semi-Riemannian geometry, possibly with degenerate directions. We prove the existence and uniqueness of the decomposition and discuss some of its basic properties. In the case of dimension d = 2, we study the extent to which some of the well-known optimality properties of the Euclidean Delaunay triangulation generalize to the higher signature setting. In particular, we describe a higher signature generalization of a well-known description of Delaunay decompositions in terms of the intersection angles between the circumscribed circles.Comment: 25 pages, 6 figure

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P′\mathcal{P}' such that (1) P′\mathcal{P}' contains P\mathcal{P}, (2) P′\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P′\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P′\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}
    • …
    corecore