38,710 research outputs found

    A rigorous analysis of the cavity equations for the minimum spanning tree

    Full text link
    We analyze a new general representation for the Minimum Weight Steiner Tree (MST) problem which translates the topological connectivity constraint into a set of local conditions which can be analyzed by the so called cavity equations techniques. For the limit case of the Spanning tree we prove that the fixed point of the algorithm arising from the cavity equations leads to the global optimum.Comment: 5 pages, 1 figur

    A rigorous analysis of the cavity equations for the minimum spanning tree

    Get PDF
    We analyze a new general representation for the Minimum Weight Steiner Tree (MST) problem which translates the topological connectivity constraint into a set of local conditions which can be analyzed by the so called cavity equations techniques. For the limit case of the Spanning tree we prove that the fixed point of the algorithm arising from the cavity equations leads to the global optimum.Comment: 5 pages, 1 figur

    Essential Constraints of Edge-Constrained Proximity Graphs

    Full text link
    Given a plane forest F=(V,E)F = (V, E) of V=n|V| = n points, we find the minimum set SES \subseteq E of edges such that the edge-constrained minimum spanning tree over the set VV of vertices and the set SS of constraints contains FF. We present an O(nlogn)O(n \log n )-time algorithm that solves this problem. We generalize this to other proximity graphs in the constraint setting, such as the relative neighbourhood graph, Gabriel graph, β\beta-skeleton and Delaunay triangulation. We present an algorithm that identifies the minimum set SES\subseteq E of edges of a given plane graph I=(V,E)I=(V,E) such that ICGβ(V,S)I \subseteq CG_\beta(V, S) for 1β21 \leq \beta \leq 2, where CGβ(V,S)CG_\beta(V, S) is the constraint β\beta-skeleton over the set VV of vertices and the set SS of constraints. The running time of our algorithm is O(n)O(n), provided that the constrained Delaunay triangulation of II is given.Comment: 24 pages, 22 figures. A preliminary version of this paper appeared in the Proceedings of 27th International Workshop, IWOCA 2016, Helsinki, Finland. It was published by Springer in the Lecture Notes in Computer Science (LNCS) serie

    Prize-Collecting TSP with a Budget Constraint

    Get PDF
    We consider constrained versions of the prize-collecting traveling salesman and the minimum spanning tree problems. The goal is to maximize the number of vertices in the returned tour/tree subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these problems based on a primal-dual approach. The algorithm relies on finding a threshold value for the dual variable corresponding to the budget constraint in the primal and then carefully constructing a tour/tree that is just within budget. Thereby, we improve the best-known guarantees from 3+epsilon and 2+epsilon for the tree and the tour version, respectively. Our analysis extends to the setting with weighted vertices, in which we want to maximize the total weight of vertices in the tour/tree subject to the same budget constraint

    Deep Q-Learning-based Distribution Network Reconfiguration for Reliability Improvement

    Full text link
    Distribution network reconfiguration (DNR) has proved to be an economical and effective way to improve the reliability of distribution systems. As optimal network configuration depends on system operating states (e.g., loads at each node), existing analytical and population-based approaches need to repeat the entire analysis and computation to find the optimal network configuration with a change in system operating states. Contrary to this, if properly trained, deep reinforcement learning (DRL)-based DNR can determine optimal or near-optimal configuration quickly even with changes in system states. In this paper, a Deep Q Learning-based framework is proposed for the optimal DNR to improve reliability of the system. An optimization problem is formulated with an objective function that minimizes the average curtailed power. Constraints of the optimization problem are radial topology constraint and all nodes traversing constraint. The distribution network is modeled as a graph and the optimal network configuration is determined by searching for an optimal spanning tree. The optimal spanning tree is the spanning tree with the minimum value of the average curtailed power. The effectiveness of the proposed framework is demonstrated through several case studies on 33-node and 69-node distribution test systems

    Spanning trees with generalized degree constraints arising in the design of wireless networks

    Get PDF
    In this paper we describe a minimum spanning tree problem with generalized degree constraints which arises in the design of wireless networks. The signal strength on the receiver side of a wireless link decreases with the distance between transmitter and receiver. In order to work properly, the interference on the receiving part of the link must be under a given threshold. In order to guarantee this constraint, for each node we impose a degree constraint that depends on the ”length” of the links adjacent to the corresponding node, more precisely, nodes adjacent to long links must have a smaller degree and vice-versa. The problem is complicated by considering different signal strengths for each link. Increasing the strength in a link increases the cost of the link. However, it also reduces the maximum allowed degree on its end nodes. We create two models using adequate sets of variables, one may be considered an extended version of the other, and relate, from a theoretical perspective, the corresponding linear programming relaxations.FCT - POCTI-ISFL-1-152FCT - PTDC/EIA/64772/200
    corecore