85 research outputs found

    The Structure of Qubit Unextendible Product Bases

    Full text link
    Unextendible product bases have been shown to have many important uses in quantum information theory, particularly in the qubit case. However, very little is known about their mathematical structure beyond three qubits. We present several new results about qubit unextendible product bases, including a complete characterization of all four-qubit unextendible product bases, which we show there are exactly 1446 of. We also show that there exist p-qubit UPBs of almost all sizes less than 2p2^p.Comment: 20 pages, 3 tables, 7 figure

    Multipartite Nonlocality without Entanglement in Many Dimensions

    Get PDF
    We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with nn parties each holding a system of dimension at least n−1n-1. This basis is generated via a quantum circuit made of control-Discrete Fourier Transform gates acting on the computational basis. The simplicity of our quantum circuit allows for an intuitive understanding of this new type of nonlocality. We also show how this circuit can be used to construct Unextendible Product Bases and their associated Bound Entangled States. To our knowledge, this is the first method which, given a general Hilbert space ⨂i=1nHdi\bigotimes_{i=1}^n {\cal H}_{d_i} with di≤n−1d_i\le n-1, makes it possible to construct (i) a basis exhibiting Nonlocality Without Entanglement, (ii) an Unextendible Product Basis, and (iii) a Bound Entangled state.Comment: 8 pages, 4 figure

    Unextendible Product Basis for Fermionic Systems

    Full text link
    We discuss the concept of unextendible product basis (UPB) and generalized UPB for fermionic systems, using Slater determinants as an analogue of product states, in the antisymmetric subspace \wedge^ N \bC^M. We construct an explicit example of generalized fermionic unextendible product basis (FUPB) of minimum cardinality N(M−N)+1N(M-N)+1 for any N≥2,M≥4N\ge2,M\ge4. We also show that any bipartite antisymmetric space \wedge^ 2 \bC^M of codimension two is spanned by Slater determinants, and the spaces of higher codimension may not be spanned by Slater determinants. Furthermore, we construct an example of complex FUPB of N=2,M=4N=2,M=4 with minimum cardinality 55. In contrast, we show that a real FUPB does not exist for N=2,M=4N=2,M=4 . Finally we provide a systematic construction for FUPBs of higher dimensions using FUPBs and UPBs of lower dimensions.Comment: 17 pages, no figure. Comments are welcom

    Exploring the Local Orthogonality Principle

    Full text link
    Nonlocality is arguably one of the most fundamental and counterintuitive aspects of quantum theory. Nonlocal correlations could, however, be even more nonlocal than quantum theory allows, while still complying with basic physical principles such as no-signaling. So why is quantum mechanics not as nonlocal as it could be? Are there other physical or information-theoretic principles which prohibit this? So far, the proposed answers to this question have been only partially successful, partly because they are lacking genuinely multipartite formulations. In Nat. Comm. 4, 2263 (2013) we introduced the principle of Local Orthogonality (LO), an intrinsically multipartite principle which is satisfied by quantum mechanics but is violated by non-physical correlations. Here we further explore the LO principle, presenting new results and explaining some of its subtleties. In particular, we show that the set of no-signaling boxes satisfying LO is closed under wirings, present a classification of all LO inequalities in certain scenarios, show that all extremal tripartite boxes with two binary measurements per party violate LO, and explain the connection between LO inequalities and unextendible product bases.Comment: Typos corrected; data files uploade
    • …
    corecore