12,034 research outputs found

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Full text link
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    Digital waveguide modeling for wind instruments: building a state-space representation based on the Webster-Lokshin model

    Get PDF
    This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations for the refined acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope and curvature). The purpose of this work is to build low-cost digital simulations in the time domain based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a Kelly-Lochbaum network of input/output systems and delays. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in the time domain. The method is applied to a real trombone, and results of simulations are presented and compared with measurements. This method seems to be a promising approach in term of modularity, complexity of calculation and accuracy, for any acoustic resonators based on tubes

    State-space representation for digital waveguide networks of lossy flared acoustic pipes

    Get PDF
    This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations to the acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope and curvature), which can lead to a good fit of the original shape of pipe. The purpose of this work is to build low-cost digital simulations in the time domain, based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a network of input/output systems and delays, of Kelly-Lochbaum network type. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in time domain. In order to validate the method, simulations are presented and compared with measurements

    On the formulation of a minimal uncertainty model for robust control with structured uncertainty

    Get PDF
    In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix, delta, and constructing the state-space representation of P(s). Three examples are presented to illustrate the procedure

    Parameterization of Stabilizing Linear Coherent Quantum Controllers

    Full text link
    This paper is concerned with application of the classical Youla-Ku\v{c}era parameterization to finding a set of linear coherent quantum controllers that stabilize a linear quantum plant. The plant and controller are assumed to represent open quantum harmonic oscillators modelled by linear quantum stochastic differential equations. The interconnections between the plant and the controller are assumed to be established through quantum bosonic fields. In this framework, conditions for the stabilization of a given linear quantum plant via linear coherent quantum feedback are addressed using a stable factorization approach. The class of stabilizing quantum controllers is parameterized in the frequency domain. Also, this approach is used in order to formulate coherent quantum weighted H2H_2 and H∞H_\infty control problems for linear quantum systems in the frequency domain. Finally, a projected gradient descent scheme is proposed to solve the coherent quantum weighted H2H_2 control problem.Comment: 11 pages, 4 figures, a version of this paper is to appear in the Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 31 May - 3 June, 201
    • 

    corecore