331 research outputs found

    Patterns for building dependable systems with trusted bases

    Get PDF
    We propose a set of patterns for structuring a system to be dependable by design. The key idea is to localize the system's most critical requirements into small, reliable parts called trusted bases. We describe two instances of trusted bases: (1) the end-to-end check, which localizes the correctness checking of a computation to end points of a system, and (2) the trusted kernel, which ensures the safety of a set of resources with a small core of a system.Northrop Grumman Cybersecurity Research ConsortiumNational Science Foundation (U.S.) (Deep and Scalable Analysis of Software Grant 0541183)National Science Foundation (U.S.) (CRI: CRD - Development of Alloy Technology and Materials Grant 0707612

    Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems

    Get PDF
    An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation

    Towards a Flexible, Lightweight Virtualization Alternative

    Get PDF
    In recent times, two virtualization approaches have become dominant: hardware-level and operating system-level virtualization. They differ by where they draw the virtualization boundary between the virtualizing and the virtualized part of the system, resulting in vastly different properties. We argue that these two approaches are extremes in a continuum, and that boundaries in between the extremes may combine several good properties of both. We propose abstractions to make up one such new virtualization boundary, which combines hardware-level flexibility with OS-level resource sharing. We implement and evaluate a first prototype

    Maruchi OS kankyo o shiensuru sofutowea oyobi hadowea kino no teian

    Get PDF
    制度:新 ; 報告番号:甲3534号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Jiko kaifukugata operetingu shisutemu kochiku furemu waku

    Get PDF
    制度:新 ; 報告番号:甲2786号 ; 学位の種類:博士(工学) ; 授与年月日:2009/2/25 ; 早大学位記番号:新500

    LibrettOS: A Dynamically Adaptable Multiserver-Library OS

    Full text link
    We present LibrettOS, an OS design that fuses two paradigms to simultaneously address issues of isolation, performance, compatibility, failure recoverability, and run-time upgrades. LibrettOS acts as a microkernel OS that runs servers in an isolated manner. LibrettOS can also act as a library OS when, for better performance, selected applications are granted exclusive access to virtual hardware resources such as storage and networking. Furthermore, applications can switch between the two OS modes with no interruption at run-time. LibrettOS has a uniquely distinguishing advantage in that, the two paradigms seamlessly coexist in the same OS, enabling users to simultaneously exploit their respective strengths (i.e., greater isolation, high performance). Systems code, such as device drivers, network stacks, and file systems remain identical in the two modes, enabling dynamic mode switching and reducing development and maintenance costs. To illustrate these design principles, we implemented a prototype of LibrettOS using rump kernels, allowing us to reuse existent, hardened NetBSD device drivers and a large ecosystem of POSIX/BSD-compatible applications. We use hardware (VM) virtualization to strongly isolate different rump kernel instances from each other. Because the original rumprun unikernel targeted a much simpler model for uniprocessor systems, we redesigned it to support multicore systems. Unlike kernel-bypass libraries such as DPDK, applications need not be modified to benefit from direct hardware access. LibrettOS also supports indirect access through a network server that we have developed. Applications remain uninterrupted even when network components fail or need to be upgraded. Finally, to efficiently use hardware resources, applications can dynamically switch between the indirect and direct modes based on their I/O load at run-time. [full abstract is in the paper]Comment: 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE '20), March 17, 2020, Lausanne, Switzerlan
    corecore