322,666 research outputs found

    Metric clusters in evolutionary games on scale-free networks

    Full text link
    The evolution of cooperation in social dilemmas in structured populations has been studied extensively in recent years. Whereas many theoretical studies have found that a heterogeneous network of contacts favors cooperation, the impact of spatial effects in scale-free networks is still not well understood. In addition to being heterogeneous, real contact networks exhibit a high mean local clustering coefficient, which implies the existence of an underlying metric space. Here, we show that evolutionary dynamics in scale-free networks self-organize into spatial patterns in the underlying metric space. The resulting metric clusters of cooperators are able to survive in social dilemmas as their spatial organization shields them from surrounding defectors, similar to spatial selection in Euclidean space. We show that under certain conditions these metric clusters are more efficient than the most connected nodes at sustaining cooperation and that heterogeneity does not always favor--but can even hinder--cooperation in social dilemmas. Our findings provide a new perspective to understand the emergence of cooperation in evolutionary games in realistic structured populations

    The Metric Space of Networks

    Full text link
    We study the question of reconstructing a weighted, directed network up to isomorphism from its motifs. In order to tackle this question we first relax the usual (strong) notion of graph isomorphism to obtain a relaxation that we call weak isomorphism. Then we identify a definition of distance on the space of all networks that is compatible with weak isomorphism. This global approach comes equipped with notions such as completeness, compactness, curves, and geodesics, which we explore throughout this paper. Furthermore, it admits global-to-local inference in the following sense: we prove that two networks are weakly isomorphic if and only if all their motif sets are identical, thus answering the network reconstruction question. Further exploiting the additional structure imposed by our network distance, we prove that two networks are weakly isomorphic if and only if certain essential associated structures---the skeleta of the respective networks---are strongly isomorphic

    Self-organized Emergence of Navigability on Small-World Networks

    Full text link
    This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric space for navigation on networks is constructed. Navigation based on distances between vertices in the hidden metric space can efficiently deliver messages on small-world networks, in which long range connections play an important role. Numerical simulations further suggest that high cluster coefficient and low diameter are both necessary for navigability. These interesting results provide profound insights into scalable routing on the Internet due to its distributed and localized requirements.Comment: 3 figure

    Geometric Graph Properties of the Spatial Preferred Attachment model

    Get PDF
    The spatial preferred attachment (SPA) model is a model for networked information spaces such as domains of the World Wide Web, citation graphs, and on-line social networks. It uses a metric space to model the hidden attributes of the vertices. Thus, vertices are elements of a metric space, and link formation depends on the metric distance between vertices. We show, through theoretical analysis and simulation, that for graphs formed according to the SPA model it is possible to infer the metric distance between vertices from the link structure of the graph. Precisely, the estimate is based on the number of common neighbours of a pair of vertices, a measure known as {\sl co-citation}. To be able to calculate this estimate, we derive a precise relation between the number of common neighbours and metric distance. We also analyze the distribution of {\sl edge lengths}, where the length of an edge is the metric distance between its end points. We show that this distribution has three different regimes, and that the tail of this distribution follows a power law

    Deep Metric Learning via Facility Location

    Full text link
    Learning the representation and the similarity metric in an end-to-end fashion with deep networks have demonstrated outstanding results for clustering and retrieval. However, these recent approaches still suffer from the performance degradation stemming from the local metric training procedure which is unaware of the global structure of the embedding space. We propose a global metric learning scheme for optimizing the deep metric embedding with the learnable clustering function and the clustering metric (NMI) in a novel structured prediction framework. Our experiments on CUB200-2011, Cars196, and Stanford online products datasets show state of the art performance both on the clustering and retrieval tasks measured in the NMI and Recall@K evaluation metrics.Comment: Submission accepted at CVPR 201
    • …
    corecore