95,901 research outputs found

    Metric Entropy of Homogeneous Spaces

    Full text link
    For a (compact) subset KK of a metric space and ε>0\varepsilon > 0, the {\em covering number} N(K,ε)N(K , \varepsilon ) is defined as the smallest number of balls of radius ε\varepsilon whose union covers KK. Knowledge of the {\em metric entropy}, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In this paper we give asymptotically correct estimates for covering numbers for a large class of homogeneous spaces of unitary (or orthogonal) groups with respect to some natural metrics, most notably the one induced by the operator norm. This generalizes earlier author's results concerning covering numbers of Grassmann manifolds; the generalization is motivated by applications to noncommutative probability and operator algebras. In the process we give a characterization of geodesics in U(n)U(n) (or SO(m)SO(m)) for a class of non-Riemannian metric structures

    A Combination Theorem for Metric Bundles

    Full text link
    We define metric bundles/metric graph bundles which provide a purely topological/coarse-geometric generalization of the notion of trees of metric spaces a la Bestvina-Feighn in the special case that the inclusions of the edge spaces into the vertex spaces are uniform coarsely surjective quasi-isometries. We prove the existence of quasi-isometric sections in this generality. Then we prove a combination theorem for metric (graph) bundles (including exact sequences of groups) that establishes sufficient conditions, particularly flaring, under which the metric bundles are hyperbolic. We use this to give examples of surface bundles over hyperbolic disks, whose universal cover is Gromov-hyperbolic. We also show that in typical situations, flaring is also a necessary condition.Comment: v3: Major revision: 56 pages 5 figures. Many details added. Characterization of convex cocompact subgroups of mapping class groups of surfaces with punctures in terms of relative hyperbolicity given v4: Final version incorporating referee comments: 63 pages 5 figures. To appear in Geom. Funct. Ana

    Characterization of Low Dimensional RCD(K,N)RCD^*(K,N) spaces

    Get PDF
    In this paper, we give the characterization of metric measure spaces that satisfy synthetic lower Riemannian Ricci curvature bounds (so called RCD(K,N)RCD^*(K,N) spaces) with \emph{non-empty} one dimensional regular sets. In particular, we prove that the class of Ricci limit spaces with RicKRic \ge K and Hausdorff dimension NN and the class of RCD(K,N)RCD^*(K,N) spaces coincide for N<2N < 2 (They can be either complete intervals or circles). We will also prove a Bishop-Gromov type inequality ( that is ,roughly speaking, a converse to the L\'{e}vy-Gromov's isoperimetric inequality and was previously only known for Ricci limit spaces) which might be also of independent interest.Comment: version 3: 37 pp, to appear in AGM
    corecore