95,901 research outputs found
Metric Entropy of Homogeneous Spaces
For a (compact) subset of a metric space and , the {\em
covering number} is defined as the smallest number of
balls of radius whose union covers . Knowledge of the {\em
metric entropy}, i.e., the asymptotic behaviour of covering numbers for
(families of) metric spaces is important in many areas of mathematics
(geometry, functional analysis, probability, coding theory, to name a few). In
this paper we give asymptotically correct estimates for covering numbers for a
large class of homogeneous spaces of unitary (or orthogonal) groups with
respect to some natural metrics, most notably the one induced by the operator
norm. This generalizes earlier author's results concerning covering numbers of
Grassmann manifolds; the generalization is motivated by applications to
noncommutative probability and operator algebras. In the process we give a
characterization of geodesics in (or ) for a class of
non-Riemannian metric structures
A Combination Theorem for Metric Bundles
We define metric bundles/metric graph bundles which provide a purely
topological/coarse-geometric generalization of the notion of trees of metric
spaces a la Bestvina-Feighn in the special case that the inclusions of the edge
spaces into the vertex spaces are uniform coarsely surjective quasi-isometries.
We prove the existence of quasi-isometric sections in this generality. Then we
prove a combination theorem for metric (graph) bundles (including exact
sequences of groups) that establishes sufficient conditions, particularly
flaring, under which the metric bundles are hyperbolic. We use this to give
examples of surface bundles over hyperbolic disks, whose universal cover is
Gromov-hyperbolic. We also show that in typical situations, flaring is also a
necessary condition.Comment: v3: Major revision: 56 pages 5 figures. Many details added.
Characterization of convex cocompact subgroups of mapping class groups of
surfaces with punctures in terms of relative hyperbolicity given v4: Final
version incorporating referee comments: 63 pages 5 figures. To appear in
Geom. Funct. Ana
Characterization of Low Dimensional spaces
In this paper, we give the characterization of metric measure spaces that
satisfy synthetic lower Riemannian Ricci curvature bounds (so called
spaces) with \emph{non-empty} one dimensional regular sets. In
particular, we prove that the class of Ricci limit spaces with and
Hausdorff dimension and the class of spaces coincide for (They can be either complete intervals or circles). We will also prove a
Bishop-Gromov type inequality ( that is ,roughly speaking, a converse to the
L\'{e}vy-Gromov's isoperimetric inequality and was previously only known for
Ricci limit spaces) which might be also of independent interest.Comment: version 3: 37 pp, to appear in AGM
- …
