1,015 research outputs found

    DRLDO A Novel DRL based De obfuscation System for Defence Against Metamorphic Malware

    Get PDF
    In this paper, we propose a novel mechanism to normalise metamorphic and obfuscated malware down at the opcode level and hence create an advanced metamorphic malware de-obfuscation and defence system. We name this system as DRLDO, for deep reinforcement learning based de-obfuscator. With the inclusion of the DRLDO as a sub-component, an existing Intrusion Detection System could be augmented with defensive capabilities against ‘zero-day’ attack from obfuscated and metamorphic variants of existing malware. This gains importance, not only because there exists no system till date that use advance DRL to intelligently and automatically normalise obfuscation down even to the opcode level, but also because the DRLDO system does not mandate any changes to the existing IDS. The DRLDO system does not even mandate the IDS’ classifier to be retrained with any new dataset containing obfuscated samples. Hence DRLDO could be easily retrofitted into any existing IDS deployment. We designed, developed, and conducted experiments on the system to evaluate the same against multiple-simultaneous attacks from obfuscations generated from malware samples from a standardised dataset that contain multiple generations of malware. Experimental results prove that DRLDO was able to successfully make the otherwise undetectable obfuscated variants of the malware detectable by an existing pre-trained malware classifier. The detection probability was raised well above the cut-off mark to 0.6 for the classifier to detect the obfuscated malware unambiguously. Further, the de-obfuscated variants generated by DRLDO achieved a very high correlation (of ≈ 0.99) with the base malware. This observation validates that the DRLDO system is actually learning to de-obfuscate and not exploiting a trivial trick

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Security related self-protected networks: Autonomous threat detection and response (ATDR)

    Get PDF
    >Magister Scientiae - MScCybersecurity defense tools, techniques and methodologies are constantly faced with increasing challenges including the evolution of highly intelligent and powerful new-generation threats. The main challenges posed by these modern digital multi-vector attacks is their ability to adapt with machine learning. Research shows that many existing defense systems fail to provide adequate protection against these latest threats. Hence, there is an ever-growing need for self-learning technologies that can autonomously adjust according to the behaviour and patterns of the offensive actors and systems. The accuracy and effectiveness of existing methods are dependent on decision making and manual input by human experts. This dependence causes 1) administration overhead, 2) variable and potentially limited accuracy and 3) delayed response time

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification
    • …
    corecore