337 research outputs found

    Axiomatization and Models of Scientific Theories

    Get PDF
    In this paper we discuss two approaches to the axiomatization of scien- tific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate in the language of set theory itself or, more rigorously (da Costa and Chuaqui), by employing formal languages that help us in writing the postulates to define a class of structures. Both approaches are called internal, for we work within a mathematical framework, here taken to be first-order ZFC. We contrast these approaches with an external one, here discussed briefly. We argue that each one has its strong and weak points, whose discussion is relevant for the philosophical foundations of science

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Axiomatization and Models of Scientific Theories

    Get PDF
    In this paper we discuss two approaches to the axiomatization of scien- tific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate in the language of set theory itself or, more rigorously (da Costa and Chuaqui), by employing formal languages that help us in writing the postulates to define a class of structures. Both approaches are called internal, for we work within a mathematical framework, here taken to be first-order ZFC. We contrast these approaches with an external one, here discussed briefly. We argue that each one has its strong and weak points, whose discussion is relevant for the philosophical foundations of science

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Truth vs. provability – philosophical and historical remarks

    Get PDF
    Since Plato, Aristotle and Euclid the axiomatic method was considered as the best method to justify and to organize mathematical knowledge. The first mature and most representative example of its usage in mathematics were Elements of Euclid. They established a pattern of a scientific theory and in particular a paradigm in mathematics

    Infinitary simultaneous recursion theorem

    Get PDF
    We prove an in nitary version of the Double Recursion Theorem of Smullyan. We give some applications which show how this form of the Recursion Theo- rem can be naturally applied to obtain interesting in nite sequences of pro- gramsPeer Reviewe
    • …
    corecore