1,904 research outputs found

    Discrete Scale Axis Representations for 3D Geometry

    Get PDF
    This paper addresses the fundamental problem of computing stable medial representations of 3D shapes. We propose a spatially adaptive classification of geometric features that yields a robust algorithm for generating medial representations at different levels of abstraction. The recently introduced continuous scale axis transform serves as the mathematical foundation of our algorithm. We show how geometric and topological properties of the continuous setting carry over to discrete shape representations. Our method combines scaling operations of medial balls for geometric simplification with filtrations of the medial axis and provably good conversion steps to and from union of balls, to enable efficient processing of a wide variety shape representations including polygon meshes, 3D images, implicit surfaces, and point clouds. We demonstrate the robustness and versatility of our algorithm with an extensive validation on hundreds of shapes including complex geometries consisting of millions of triangles

    Greedy Geometric Optimization Algorithms for Collection of Balls

    Get PDF
    Modeling 3D objects with balls is routine for two reasons: on the one hand, the medial axis transform allows representing a solid object as a union of medial balls; on the other hand, selected shapes, and molecules in particular, are naturally represented by collections of balls. Yet, the problem of choosing which balls are best suited to approximate a given shape is a non trivial one. This paper addresses two problems in this realm. The first one, conformational diversity selection, consists of choosing kk molecular conformations amidst nn, so as to maximize the geometric diversity of the kk conformers. The second one, inner approximation, consists of approximating a molecule of nn balls with kk balls. On the theoretical side, we demonstrate that for both problems, a geometric generalization of max kk-cover applies, with weights depending on the cells of a surface or volumetric arrangement. Tackling these problems with greedy strategies, it is shown that the 1−1/e1-1/e bound known in combinatorial optimization applies in some cases but not all. On the applied side, we present a robust and effective implementation of the greedy algorithm for the inner approximation problem, which incorporates the calculation of the exact Delaunay triangulation of a points whose coordinates are degree two algebraic number, of the medial axis of a union of balls, and of a certified estimate of the volume of a union of balls. In particular, we show that the inner approximation of complex molecules yields accurate coarse-grain models with a number of balls 100 times smaller than the number of atoms, a key requirement to simulate crowded protein environments.Les boules jouent un rôle central en modélisation géométrique pour deux raisons: d'une part la transformée associée à l'axe médian permet de représenter un objet solide comme une union in nie de boules; d'autre part, certaines formes, et les modèles moléculaires de van der Waals en particulier, sont dé nies par une union de boules. Néanmoins, la question de savoir quel ensemble de boules utiliser pour approximer une forme est non trivial, de telle sorte que ce travail aborde deux problèmes liés. Pour les présenter, par conformation moléculaire, nous entendons un modèle dé ni par un ensemble ni de boules. La premier problème, ou selection de diversité géométrique, consiste à choisir k conformations moléculaires parmi n, de façon à maximiser la diversité de l'ensemble choisi. Le second, ou approximation par défaut, consiste à approximer une molécule de n boules par k < n boules. Du point de vue théorique, nous montrons que les deux problèmes peuvent être traités avec une variante géométrique de max k-cover, les poids dépendant de la géométrie d'un arrangement surfacique ou volumique de sphères. La résolution de ces problèmes par un algorithme glouton permet d'avoir un facteur d'approximation borné inférieurement par 1 1=e dans certains cas. D'un point de vue appliqué, nous présentons une implémentation robuste de l'algorithme glouton pour l'approximation par défaut, laquelle incorpore (i) le calcul exact d'une triangulation de Delaunay dont les points ont des coordonnées qui sont des nombres algébriques de degré deux, (ii) le calcul exact de l'axe médian d'une union de boules, et (iii) une approximation certi ée du volume d'une union de boules. En particulier, nous montrons que des approximations précises de modèles moléculaires peuvent être obtenues en utilisant un nombre de boules 100 fois inférieur au nombre d'atomes, une propriété particulièrement séduisante pour la simulation d'environnement protéique dense

    Optimal Filling of Shapes

    Full text link
    We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuristic for finding solutions of maximal discs. We consider the properties of ideal distributions of N discs as N approaches infinity. We note an analogy with energy landscapes.Comment: 5 page

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Extracting curve-skeletons from digital shapes using occluding contours

    Get PDF
    Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement
    • …
    corecore