61 research outputs found

    Symbiosis between the TRECVid benchmark and video libraries at the Netherlands Institute for Sound and Vision

    Get PDF
    Audiovisual archives are investing in large-scale digitisation efforts of their analogue holdings and, in parallel, ingesting an ever-increasing amount of born- digital files in their digital storage facilities. Digitisation opens up new access paradigms and boosted re-use of audiovisual content. Query-log analyses show the shortcomings of manual annotation, therefore archives are complementing these annotations by developing novel search engines that automatically extract information from both audio and the visual tracks. Over the past few years, the TRECVid benchmark has developed a novel relationship with the Netherlands Institute of Sound and Vision (NISV) which goes beyond the NISV just providing data and use cases to TRECVid. Prototype and demonstrator systems developed as part of TRECVid are set to become a key driver in improving the quality of search engines at the NISV and will ultimately help other audiovisual archives to offer more efficient and more fine-grained access to their collections. This paper reports the experiences of NISV in leveraging the activities of the TRECVid benchmark

    Video Data Visualization System: Semantic Classification And Personalization

    Full text link
    We present in this paper an intelligent video data visualization tool, based on semantic classification, for retrieving and exploring a large scale corpus of videos. Our work is based on semantic classification resulting from semantic analysis of video. The obtained classes will be projected in the visualization space. The graph is represented by nodes and edges, the nodes are the keyframes of video documents and the edges are the relation between documents and the classes of documents. Finally, we construct the user's profile, based on the interaction with the system, to render the system more adequate to its references.Comment: graphic

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    Simulating the Future of Concept-Based Video Retrieval under Improved Detector Performance

    Get PDF
    In this paper we address the following important questions for concept-based video retrieval: (1) What is the impact of detector performance on the performance of concept-based retrieval engines, and (2) will these engines be applicable to real-life search tasks if detector performance improves in the future? We use Monte Carlo simulations to answer these questions. To generate the simulation input, we propose to use a probabilistic model of two Gaussians for the confidence scores that concept detectors emit. Modifying the model's parameters affects the detector performance and the search performance. We study the relation between these two performances on two video collections. For detectors with similar discriminative power and a concept vocabulary of around 100 concepts, the simulation reveals that in order to achieve a search performance of 0.20 mean average precision (MAP) -- which is considered sufficient performance for real-life applications -- one needs detectors with at least 0.60 MAP. We also find that, given our simulation model and low detector performance, MAP is not always a good evaluation measure for concept detectors since it is not strongly correlated with the search performance

    TagBook: A Semantic Video Representation without Supervision for Event Detection

    Get PDF
    We consider the problem of event detection in video for scenarios where only few, or even zero examples are available for training. For this challenging setting, the prevailing solutions in the literature rely on a semantic video representation obtained from thousands of pre-trained concept detectors. Different from existing work, we propose a new semantic video representation that is based on freely available social tagged videos only, without the need for training any intermediate concept detectors. We introduce a simple algorithm that propagates tags from a video's nearest neighbors, similar in spirit to the ones used for image retrieval, but redesign it for video event detection by including video source set refinement and varying the video tag assignment. We call our approach TagBook and study its construction, descriptiveness and detection performance on the TRECVID 2013 and 2014 multimedia event detection datasets and the Columbia Consumer Video dataset. Despite its simple nature, the proposed TagBook video representation is remarkably effective for few-example and zero-example event detection, even outperforming very recent state-of-the-art alternatives building on supervised representations.Comment: accepted for publication as a regular paper in the IEEE Transactions on Multimedi

    TNO at TRECVID 2013 : multimedia event detection and instance search

    Get PDF
    We describe the TNO system and the evaluation results for TRECVID 2013 Multimedia Event Detection (MED) and instance search (INS) tasks. The MED system consists of a bag-of-word (BOW) approach with spatial tiling that uses low-level static and dynamic visual features, an audio feature and high-level concepts. Automatic speech recognition (ASR) and optical character recognition (OCR) are not used in the system. In the MED case with 100 example training videos, support-vector machines (SVM) are trained and fused to detect an event in the test set. In the case with 0 example videos, positive and negative concepts are extracted as keywords from the textual event description and events are detected with the high-level concepts. The MED results show that the SIFT keypoint descriptor is the one which contributes best to the results, fusion of multiple low-level features helps to improve the performance, and the textual event-description chain currently performs poorly. The TNO INS system presents a baseline open-source approach using standard SIFT keypoint detection and exhaustive matching. In order to speed up search times for queries a basic map-reduce scheme is presented to be used on a multi-node cluster. Our INS results show above-median results with acceptable search times.This research for the MED submission was performed in the GOOSE project, which is jointly funded by the enabling technology program Adaptive Multi Sensor Networks (AMSN) and the MIST research program of the Dutch Ministry of Defense. The INS submission was partly supported by the MIME project of the creative industries knowledge and innovation network CLICKNL.peer-reviewe

    TRECVID 2014 -- An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics

    No full text
    International audienceThe TREC Video Retrieval Evaluation (TRECVID) 2014 was a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last dozen years this effort has yielded a better under- standing of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID is funded by the NIST with support from other US government agencies. Many organizations and individuals worldwide contribute significant time and effort

    Evaluating Multimedia Features and Fusion for Example-Based Event Detection

    Get PDF
    Multimedia event detection (MED) is a challenging problem because of the heterogeneous content and variable quality found in large collections of Internet videos. To study the value of multimedia features and fusion for representing and learning events from a set of example video clips, we created SESAME, a system for video SEarch with Speed and Accuracy for Multimedia Events. SESAME includes multiple bag-of-words event classifiers based on single data types: low-level visual, motion, and audio features; high-level semantic visual concepts; and automatic speech recognition. Event detection performance was evaluated for each event classifier. The performance of low-level visual and motion features was improved by the use of difference coding. The accuracy of the visual concepts was nearly as strong as that of the low-level visual features. Experiments with a number of fusion methods for combining the event detection scores from these classifiers revealed that simple fusion methods, such as arithmetic mean, perform as well as or better than other, more complex fusion methods. SESAME’s performance in the 2012 TRECVID MED evaluation was one of the best reported

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature
    corecore