61 research outputs found

    Differentiable PKC activation on pacemaking activity of cardiomyocytes derived from mouse embryonic stem cells

    Full text link
    Les maladies cardiovasculaires sont souvent causées par des arythmies qui proviennent d'une obstruction du système de conduction cardiaque. L'intervenant clé de ce système est le nœud sinu-atrial (SA), qui est responsable de l’initiation de chaque battement cardiaque. L’activation électrique à intervalles réguliers, assurant que le rythme cardiaque est un rythme normal. Le dysfonctionnement du nœud SA entraînerait des instabilités électriques dans le cœur. Une maladie cardiaque acquise, comme la cardiopathie rhumatismale, ou un bloc de conduction ne sont que quelques-uns des nombreux cas qui nécessitent un stimulateur cardiaque électronique pour surveiller la fréquence cardiaque et générer une impulsion lorsqu'elle bat anormalement. Bien que le stimulateur cardiaque électrique soit considéré comme une thérapie fiable, il n'est pas sans limites. Ces limites comprennent les complications chirurgicales, l'infection au plomb ainsi que la durée de vie limitée de la batterie, qui doit être remplacée à intervalles de quelques années, ce qui alourdit le fardeau hospitalier. Plusieurs approches ont été adoptées pour développer une méthode thérapeutique plus adéquate. Une stratégie qui sera étudiée implique l'utilisation d'une greffe de cellules de stimulateur cardiaque, créant fondamentalement un stimulateur biologique. Les approches de thérapie cellulaire utilisent des cellules souches embryonnaires pour évoluer vers les lignées de cellules cardiaques, y compris les cellules stimulatrices cardiaques. Ces cellules de stimulation sont caractérisées par une dépolarisation spontanée qui crée les impulsions rythmiques dans le cœur et contrôle la fréquence cardiaque. Un élément important des cellules du stimulateur cardiaque qui donne lieu à la dépolarisation spontanée sont les canaux « hyperpolarization-activated and cyclic nucleotide-gated » qui sont activés pendant l’hyperpolarisation et conduisent le courant sous le nom de « funny current ». Ce courant augmente la perméabilité intérieure de la cellule aux courants de sodium et de potassium conduisant à la dépolarisation de la cellule. D'autre part, le taux de conduction est déterminé par la connexine 30.2 et la connexine 45, qui sont des protéines transmembranaires qui s’assemblent pour former des jonctions lacunaires. L'expression de HCN et l'expression de la connexine ont toutes deux étés liés au facteur T-box 3 (Tbx3) dans le développement des myocytes auriculaires. Une approche praticable pour moduler l'expression des gènes et par conséquent l'expression des protéines est l'utilisation du conditionnement chimique. Le Phorbol 12- myristate 13-acétate (PMA) est un activateur de Protéine Kinase C (PKC) lié à l'expression de Tbx3, et par conséquent à l'expression de HCN et de connexine, et entraînant une modification de l'activité spontanée. Les cellules souches embryonnaires de souris sont des cellules qui sont isolées de la masse cellulaire interne des embryons. Ces cellules ont la capacité de se différencier en tous les types de cellules somatiques. En combinant les facteurs de croissance, ces cellules peuvent se différencier en cardiomyocytes. Nous émettons l'hypothèse que le conditionnement chronique de cardiomyocytes de souris avec PMA entraîne une régulation à la hausse de l'expression de Tbx3 et par conséquent une régulation à la hausse de l'expression de HCN et de l'expression de connexine, favorisant ainsi le développement des cellules stimulatrices cardiaques dans la population des cardiomyocytes. Afin de vérifier notre hypothèse, nous avons acheté des cellules de la lignée cellulaire E14TG2A de souris. Ces cellules ont été cultivées dans des pétris et différenciées en cardiomyocytes à l'aide d'un protocole en trois étapes (voir la section Méthodes). Les cardiomyocytes sont ensuite exposés à la PMA à des concentrations variables (0.1 µM vs 1 µM) pendant 1h (exposition aiguë) ou 24 h (exposition chronique). Les résultats variaient d'un groupe expérimental à l'autre par rapport au groupe témoin. Dans toutes les conditions expérimentales, il semble y avoir une augmentation initiale de l'activité spontanée, mais elle s'inverse rapidement à la marque des 24 heures, où le rythme diminue. Différentes concentrations jouent un rôle dose-dépendant dans l'effet inhibiteur de longue durée sur la stimulation des cellules.Cardiovascular diseases are often caused by arrhythmias that originate from an obstruction within the cardiac conduction system. The key player within that system is the sinoatrial (SA) node, which is responsible for initiation the electrical impulses at a regular interval, insuring the heartbeat at a normal pace. Dysfunction of the SA node would lead to electrical instabilities in the heart. An acquired heart disease, such as rheumatic heart disease, or a conduction block are just some of many cases that would require an electronic pacemaker to monitor the heart rate and generate an impulse when it beats abnormally. Although the electric pacemaker is considered as a reliable therapy, it is not without limitations. These limitations include surgery complication, lead infection as well as limited battery lifespan, which requires replacement every few years thus adding to the hospital burden. Several approaches have been taken to develop a more adequate therapeutic method. A strategy that will be investigated involves using a graft of pacemaker cells, fundamentally creating a biological pacemaker. Cell therapy approaches use embryonic stem cells to evolve into the cardiac cell lines, including pacemaker cells. These pacing cells are characterized by spontaneous depolarization that create the rhythmic impulses in the heart and control the heart rate. An important element of the pacemaker cells that give rise to the spontaneous depolarization are the hyperpolarization- activated and cyclic nucleotide-gated (HCN) channels that are activated during hyperpolarization and conduct the funny current by increasing the cell’s inward permeability to sodium-potassium currents. On the other hand, the conduction rate is determined by connexin 30.2 and connexin 45, which are transmembrane proteins that assemble to form gap junctions. Both HCN expression and connexin expression has been linked to T-box factor 3 (Tbx3) in the development of atrial myocytes. A practicable approach to modulate gene expression and consequently protein expression is using chemical conditioning. Phorbol 12-myristate 13-acetate (PMA) is a Protein Kinase C (PKC) activator that has linked to Tbx3 expression, and consequently HCN and connexin expression, and lead to a modification in spontaneous activity. Mouse embryonic stem cells (ESCs) are cells that are isolated from the inner cell mass of early embryos. These cells can differentiate into all somatic cell types. Given the proper combination of growth factors, these cells can differentiate into cardiomyocytes. We hypothesize that chronic conditioning of mice cardiomyocytes with PMA lead to an upregulation of Tbx3 expression and consequently an upregulation of HCN expression and connexin expression, therefore promoting the development of pacemaker cells within the cardiomyocyte population. In order to test our hypothesis, we purchased cells from the mouse E14TG2A cell line. These cells were cultured in glass bottom petri dishes and differentiated into cardiomyocytes using a three-step protocol (shown in Methods section). The cardiomyocytes are then exposed to PMA in varying concentration (0.1 µM vs 1 µM) for either 1h (acute exposure) or 24 h (chronic exposure). The results varied between the experimental groups compared to the control. In all experimental conditions there seems to be an initial increase in spontaneous activity, but this is quickly reversed at the 24 h mark, where pacing decreased. Different concentration plays a dose-dependent role in long-lasting inhibitory effect on the pacing of the cell

    Regulation of sinoatrial node and pacemaking mechanisms in health and disease

    Full text link
    Le noeud sinusal (NS) est le centre de l‟automatisme cardiaque. Grâce à son activité électrique spontanée, il dicte la fréquence cardiaque (FC) en réponse aux demandes physiologiques. A ce jour, le NS demeure un sujet de recherche important puisque les mécanismes moléculaires responsables de sa régulation sont encore méconnus. Par exemple, les processus menant à la bradycardie sinusale et à la maladie du sinus (MS) chez les personnes âgées sont mécompris et présentement l‟implantation d‟un stimulateur cardiaque demeure le seul traitement disponible. Ainsi, l‟objectif de cette thèse était de déterminer les changements moléculaires et cellulaires se produisant au niveau du NS en réponse à divers stimuli physiologiques et pathologiques afin d'établir leurs rôles potentiels dans la régulation de la FC et le développement de la MS. Dans les deux premiers chapitres, la grossesse est présentée comme modèle physiologique. En effet, la réponse adaptative aux demandes croissantes de la mère et du foetus engendre des changements physiologiques considérables au niveau du myocarde, dont une augmentation de la FC essentielle pour la perfusion adéquate des organes. Toutefois, cette augmentation peut aussi favoriser le développement d‟arythmies. Dans le troisième chapitre, l‟inflammation, un facteur présent lors du vieillissement et dans plusieurs pathologies où la MS se manifeste, a fait l‟objet d‟une étude dans le but de déterminer son rôle dans le développement de la MS. Les résultats obtenus dans cette thèse démontrent que la grossesse induit une hausse de la FC chez la souris gestante similaire à celle retrouvée chez la femme enceinte. Cette accélération était due à un remodelage électrique du NS. Plus spécifiquement, la fréquence des potentiels d‟action ainsi que la densité et l‟expression des courants pacemaker (If) et calcique de type L (ICaL) étaient augmentées. De plus, une accélération des transitoires calciques spontanés et de la vitesse de relâche calcique du réticulum sarcoplasmique a été observée. La régulation de l‟automaticité par un stimulus pathologique, l‟interleukine-1β, est abordée par la suite. L‟interleukine-1β, une cytokine ayant un rôle majeur comme médiateur inflammatoire, se retrouve en concentrations élevées dans plusieurs maladies associées avec la ii MS. Nos résultats démontrent que l‟interleukine-1β engendre une diminution de l‟automaticité associée à une réduction de If et ICaL dans les cardiomyocytes humains de type nodal dérivés de cellules souches induites pluripotentes (hiPSC-CM). En parallèle, le phénotype électrophysiologique et moléculaire des hiPSC-CM a été caractérisé démontrant leur homologie avec les cellules du NS humain adulte, les validant comme modèle in vitro de cellules nodales humaines. En conclusion, les études présentées dans cette thèse démontrent que le NS est plus qu‟un simple tissu régulé par l‟innervation autonome. En effet, son automaticité est dynamique et peut être influencée par des facteurs physiologiques ou pathologiques. Nos résultats contribuent ainsi à une meilleure compréhension des mécanismes sous-jacents à l‟automaticité. Ces avancées sont importantes non seulement pour la santé des femmes, mais aussi pour les individus souffrant de la MS. À terme, nous espérons que ces résultats contribueront au développement de stratégies thérapeutiques pour traiter des complications liées aux troubles d‟automaticité cardiaque.The sinoatrial node (SAN) is the dominant cardiac pacemaker. With its spontaneous automaticity, it dictates rhythm and controls heart rate in response to varying physiological demands. Despite its modest size, the SAN is a very heterogeneous and complex structure that remains the topic of research efforts due, in part, to uncertainties in the mechanisms that regulate pacemaking in various conditions. For instance, the processes that lead to severe sinus bradycardia and SAN dysfunction (SND) in the elderly are unknown and to date, the implantation of electronic pacemaker remains the only SND treatment. Accordingly, the overall objective of this thesis was to explore and highlight the molecular and cellular changes that occur within the SAN in both physiological and pathological states, while determining how they contribute to regulation of heart rate and potentially SND. In the first two chapters, we present pregnancy as a physiological model considering it is a period during which substantial adaptive changes to the myocardium and increases in heart rate occur. Paradoxically, the rapid rate, which is essential for adequate organ perfusion of both mother and foetus, may also increase vulnerability to certain arrhythmias. In the third chapter, inflammation, a central process in pathology and common factor to several diseases and even ageing, was evaluated as potential underlying circumstance contributing to the development of sinus bradycardia and SND. Combinations of in vivo, ex vivo, biochemical, molecular and cellular approaches were used in order to generate an integrated understanding of the models we examined. Our data shows that in pregnant mice, an increase in heart rate similar to that of pregnant women occurs and was due to an electrical remodelling of the SAN. Specifically, an increase in action potential frequency of isolated individual SAN cells was observed. This was attributed to increased expression and density of pacemaker (If) and L-type Ca2+ currents (ICaL) along with a rapid spontaneous Ca2+ transient rate and faster intracellular sarcoplasmic reticulum Ca2+ release. We then demonstrate that the pro-inflammatory cytokine interleukin-1β which is a major inflammatory mediator that is upregulated in several diseases associated with SND, iv dramatically slows automaticity by reducing If and ICaL density in nodal-like cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM). Importantly, in that study, hiPSC-CMs were also physiologically and molecularly characterized revealing their high resemblance to adult human SAN and a potential use as a novel in vitro model to study pacemaking in humans. In conclusion, the results of this thesis demonstrate that the SAN is not a simple, neurally controlled tissue, but a rather dynamic pacemaker that undergoes extensive intrinsic remodelling during states of health and disease. The results contribute to understanding physiological mechanisms of pacemaking and how they are altered by disease and may be relevant for both women‟s health and the individuals affected by SND. Ultimately, we hope these findings will be helpful in the development of therapeutic strategies to treat pacemaking-related complications

    Understanding altered intrinsic heart rate in type 2 diabetes

    Get PDF
    Heart rate (HR) is generated by sinoatrial node (SAN) intrinsic pacemaking and modulated by autonomic innervation. Within the SAN, intrinsic (ex vivo) HR is determined by the mutual entrainment of the sarcolemmal voltage membrane (Vm) and intracellular Ca2+ clocks. The Vm clock involves membrane ion channels, such as the hyperpolarisation-activated cyclic nucleotide-gated channel 4 (HCN4), transient type (T-type) and long-lasting type (L-type) Ca2+ channels and the ion transporter Na+-Ca2+ exchanger 1 (NCX1). The Ca2+ clock primarily involves the intracellular Ca2+ store, the sarcoplasmic reticulum (SR), and the Ca2+ release protein the ryanodine receptor 2 (RyR2), the Ca2+ uptake protein the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) and its regulator phospholamban. Conduction of the AP within the SAN occurs via the coupling protein connexin 45 (cx45). Additionally, the presence of the non-neuronal cardiac intrinsic cholinergic system within cardiomyocytes suggests it might also be present in the SAN cardiomyocytes and have the capacity to modulate intrinsic HR. Disruption of HR control occurs in patients and animal models with type 2 diabetes (DM). Interestingly, in the DM Zucker Diabetic Fatty (ZDF) rats, intrinsic HR was significantly decreased compared to non-diabetic (nDM) controls. This suggests DM impairs the intrinsic ability of the SAN to generate a normal HR. Therefore, the overall aim of this research was to investigate whether the decreased intrinsic HR in DM was due to changes in the Vm and / or Ca2+ clocks, cx45 and / or increased non-neuronal intrinsic cholinergic system activity. The SAN / hearts of 19 – 22 week-old nDM and DM ZDF rats were used to investigate protein expression of the key SAN clock, cx45 and cholinergic proteins via western blotting, intrinsic HR contributions from HCN4, SERCA2a and muscarinic type 2 (M2) receptor via Langendorff, and SAN cellular / tissue morphology via immunohistochemistry. For the Vm clock, a significant increase in HCN4 (nDM 0.83 ± 0.07 versus DM 1.67 ± 0.19, p0.05) or SERCA2a to phospholamban ratio (nDM 2.97 ± 0.68 versus DM 2.37 ± 0.34, p>0.05) was found in DM. A significant increase in the M2 receptor expression (nDM 1.14 ± 0.18 versus DM 3.14 ± 0.80, p0.05). For immunohistochemistry, no difference in cellular / tissue distribution of key SAN clock, cx45 or cholinergic proteins was observed, or in the levels of fibrosis (p>0.05) and fat (p>0.05) within the DM SAN. Collectively, this study presents novel mechanisms that are altered in pacemaking in the type 2 DM SAN. From this research, I conclude, the lower intrinsic HR in DM is, in part, a result of changes to both the Vm and Ca2+ clock due to non-functional HCN4 channels and compromised SERCA2a activity that would prolong diastolic depolarisation and repolarisation respectively

    Molecular mapping of the rabbit atrioventricular node

    Get PDF
    The atrioventricular node (AVN) of the heart is responsible for the important conduction delay between atrial systole and ventricular systole. The anatomical architecture and functional properties of the AVN are complex. Ionic currents have been characterised in the AVN at both the whole tissue level and single cell level. However, little is known about the molecular basis of these ionic currents. There were two aims of this research: 1) to generate an accurate three-dimensional reconstruction of the rabbit AVN conduction axis and 2) to use real time PCR and in situ hybridisation to measure levels of mRNA for specific ion channels and membrane proteins in the rabbit AVN and surrounding atrial and ventricular tissue. Neurofilament-M (NF-M) immunolabelling revealed a tract of cells extending from the posterior nodal extension through the compact node to the common bundle. The PNE appeared to correspond to the slow pathway. Loosely packed atrial muscle comprised the anterior region of the AVN conduction axis closest to the enclosed part of the AVN and most likely represents the fast pathway. Lower nodal cells extended from the common bundle to the lower extremities of the compact node and PNE. Significant differences in the mRNA levels between the PNE and atrial muscle for the pacemaker channel HCN4, INa channels Navl. 1 and Na, 1.5, the Ica,L channel Cav 1.3, the I to channel Ăź-subunit KChIP2 and Cx43 were found HCNI, Nav 1.1, Cav 1.3 and NF-M mRNA were significantly higher in the PNE, compact node and common bundle compared to the atrium and ventricle. Kir 2.1 mRNA was significantly higher in the ventricular muscle compared to the PNE and atrial muscle. Atrial natriuretic peptide (ANP) mRNA, was significantly higher in the atrial muscle compared to other tissues. For mRNAs for the Ito channels, Kv 4.2 and Kv 4.3, the delayed rectifier K+ channels, Kv 1.5, ERG, K, LQTI and minK, the inward rectifier K+ channels, Kir 2.2, Kir6.2 and Ăź-subunit SUR2A, and the Ca2+ handling proteins, RYR2, RYR3, NCXI and SERCA2a, there were no significant differences between tissues. In situ hybridisation staining revealed further complexity of the AVN conduction axis tissue. A region of loosely packed atrial tissue immediately adjacent to the nodal tissue was KChIP2 negative and Nav1.5 negative, and the lower nodal cells were both Cav 1.2 and Cav 1.3 positive. This study has described a complex architecture of the AVN and added further complexity by providing a detailed account of ion channel expression throughout this tissue

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field
    • …
    corecore